Skip to main content

Airborne Remote Detection of Turbulence with Forward-Pointing LIDAR

  • Chapter
  • First Online:
Aviation Turbulence

Abstract

Presently, the airborne remote detection of atmospheric turbulence is limited to radar-visible regions of the sky, i.e., zones that contain hydrometeors like rain or cloud droplets. The bulk of the actual turbulence, possible in clear air at all flight altitudes, evades such a remote detection, though a remote determination of aircraft-relevant physical parameters relevant to turbulence could significantly increase flight safety.

The following chapter reviews possible techniques of remote turbulence detection in clear air and identifies the most promising approaches for future aircraft. These are shown to be optical methods, i.e., LIDAR (Light Detection and Ranging) systems. Principles, as well as pros and cons of some complementary lidar techniques, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will henceforth consider an aircraft-fixed reference system, i.e., \( u(R)=\overline{u}(R)+u^{\prime }(R) \) be the velocity along the aircraft motion axis R, v′ the lateral fluctuating component, and w′ the vertical component.

References

  • Atlas, D.: Clear air turbulence detection methods: a review. In: Pao, Y.-H., Goldburg, A. (eds.) Clear Air Turbulence and Its Detection, pp. 381–401. Plenum Press, New York, NY (1969)

    Chapter  Google Scholar 

  • Atlas, D., Hardy, K.R., Naito, K.: Optimizing the radar detection of clear air turbulence. J. Appl. Meteorol. 5(4), 450–460 (1966)

    Article  Google Scholar 

  • Banakh, V.A., Smalikho, I.N.: Determination of optical turbulence intensity by atmospheric backscattering of laser radiation. Atmos. Oceanic Opt. 24(5), 457–465 (2011)

    Article  Google Scholar 

  • Baynes, J.: Rockwell Collins Unveils New MultiScan ThreatTrack™ Weather Radar. http://investor.rockwellcollins.com/investor-relations/press-releases/press-release-details/2014/Rockwell-Collins-Unveils-New-MultiScan-ThreatTrack-Weather-Radar (2014). Accessed 01 June 2015

  • Behrendt, A.: Temperature measurements with lidar. In: Weitkamp, C. (ed.) Lidar – Range-Resolved Optical Remote Sensing of the Atmosphere, pp. 273–305. Springer, New York, NY (2005)

    Google Scholar 

  • Bilbro, J., Fichtl, G., Fitzjarrald, D., Krause, M., Lee, R.: Airborne Doppler lidar wind field measurements. Bull. Am. Meteorol. Soc. 65(4), 348–359 (1984)

    Article  Google Scholar 

  • Birner, T.: Die extratropische Tropopausenregion. Dissertation, Ludwig-Maximilans-Universität, München (2003)

    Google Scholar 

  • Bruneau, D., Garnier, A., Hertzog, A., Porteneuve, J.: Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer. Appl. Opt. 43(1), 173–182 (2004)

    Article  Google Scholar 

  • Buehler, W.E., King, C.H., Lunden, C.D.: Radar echoes from clear air inhomogeneities. In: Pao, Y.-H., Goldburg, A. (eds.) Clear Air Turbulence and Its Detection, pp. 425–435. Plenum Press, New York, NY (1969)

    Chapter  Google Scholar 

  • Cezard, N.: Etude de faisabilité d’un lidar Rayleigh-Mie pour des mesures à courte portée de la vitesse de l’air, de sa température et de sa densité. Dissertation, Ecole Polytechnique (2008)

    Google Scholar 

  • Clifford, S.F., Kaimal, J.C., Lataitis, R.J., Strauch, R.G.: Ground-based remote profiling in atmospheric studies: an overview. Proc. IEEE 82(3), 313–355 (1994)

    Article  Google Scholar 

  • Collis, R.T.H.: Clear air turbulence detection. Spectr. IEEE 3(4), 56–61 (1966)

    Article  Google Scholar 

  • Crooks, W.M., Hoblit, F.M., Prophet, D.T., et al.: Project HICAT, An Investigation of High Altitude Clear Air Turbulence. Technical Report AFFDL-TR-67-123 Vol. 1, Air Force Flight Dynamics Laboratory (1967)

    Google Scholar 

  • Dolfi-Bouteyre, A., Canat, G., Valla, M., Augere, B., Besson, C., Goular, D., Macq, B.: Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier. IEEE J. Quantum Electron 15(2), 441–450 (2009)

    Google Scholar 

  • Douxchamps, D., Lugan, S., Verschueren, Y., Mutuel, L., Macq, B., Chihara, K.: On-board axial detection of wake vortices using a 2 μm LiDAR. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1276–1290 (2008)

    Article  Google Scholar 

  • Ehlers, J., Fezans, N.: Airborne doppler LiDAR sensor parameter analysis for wake vortex impact alleviation purposes. In Advances in Aerospace Guidance, Navigation and Control, pp. 433–453. Springer International Publishing (2015)

    Google Scholar 

  • Ehlers, J., Fischenberg, D., Niedermeier, D.: Wake impact alleviation control based on wake identification. AIAA J. (2015). doi:10.2514/1.C033157

    Google Scholar 

  • Feneyrou, P., Lehureau, J.-C., Barny, H.: Performance evaluation for long-range turbulence-detection using ultraviolet lidar. Appl. Opt. 48(19), 3750–3759 (2009)

    Article  Google Scholar 

  • Fischer, L., Kiemle, Ch., Craig, G.C.: Height‐resolved variability of midlatitude tropospheric water vapor measured by an airborne lidar. Geophys. Res. Lett. 39(6), (2012). doi:10.1029/2011GL050621

    Google Scholar 

  • Flesia, C., Korb, C.L.: Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 38(3), 432–440 (1999)

    Article  Google Scholar 

  • Franken, P. A., Jenney, J. A., Rank, D. M.: Airborne investigations of clear air turbulence with laser radars (Clear air turbulence detection with laser radar, noting airborne equipment and results). In: 8th Annual Electron and Laser Beam Symposium, University of Michigan, Ann Arbor, pp. 87–103. (1966)

    Google Scholar 

  • Frehlich, R., Hannon, S.M., Henderson, S.W.: Coherent Doppler lidar measurements of wind field statistics. Boundary-Layer Meteorol. 86(2), 233–256 (1998)

    Article  Google Scholar 

  • Gentry, B., McGill, M., Schwemmer, G., Hardesty, M., Brewer, A., Wilkerson, Th., Lindemann, S.: The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program. Presentation to Earth Science Technology Conference, College Park (2006)

    Google Scholar 

  • Good, R.E., Watkins, B.J., Quesada, A.F., Brown, J.H., Loriot, G.B.: Radar and optical measurements of Cn2. Appl. Opt. 21(18), 3373–3376 (1982)

    Article  Google Scholar 

  • Gurvich, A.S.: Lidar sounding of turbulence based on the backscatter enhancement effect. Izvestiya Atmos. Oceanic Phys. 48(6), 585–594 (2012)

    Article  Google Scholar 

  • Gurvich, A.S.: Lidar positioning of higher clear-air turbulence regions. Izvestiya Atmos. Oceanic Phys. 50(2), 143–151 (2014)

    Article  Google Scholar 

  • Haggerty, J., Schick, K., Mahoney, M.J., Lim, B.: The NCAR microwave temperature profiler: data applications from recent deployments. In: Microwave Radiometry and Remote Sensing of the Environment (MicroRad), pp. 133–135. 13th Specialist Meeting, Pasadena, CA (2014). doi:10.1109/MicroRad.2014.6878924

  • Hamilton, D.W., Proctor, F.H., Ahmad, N.N.: Flight Tests of the Turbulence Prediction and Warning System (TPAWS). NASA/TM-2012-217337 (2012)

    Google Scholar 

  • Hannon, S.M., Bagley, H.R., Bogue, R.K.: Airborne Doppler lidar turbulence detection: ACLAIM flight test results. In: AeroSense’99, pp. 234–241. International Society for Optics and Photonics (1999)

    Google Scholar 

  • Hauchecorne, A., Cot, Ch., Dalaudier, F., Porteneuve, J., Gaudo, Th., Wilson, R., Besson, C.: Set-up of a ground-based Rayleigh lidar to detect clear air turbulence. In: 25th International Laser Radar Conference (ILRC), pp. 269–272. St. Petersburg (2010)

    Google Scholar 

  • Hauchecorne, A., Cot, C., Dalaudier, F., Porteneuve, J., Gaudo, T., Wilson, R., Cénac, C., Laqui, C., Keckhut, P., Perrin, J.-M., Dolfi, A., Cézard, N., Lombard, L., Besson, C.: Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar. Appl. Opt. 55(13), 3420–3428 (2016)

    Article  Google Scholar 

  • Henderson, S.W., Suni, P.J.M., Hale, C.P., Hannon, S.M., Magee, J.R., Bruns, D.L., Yuen, E.H.: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens. 31(1), 4–15 (1993)

    Article  Google Scholar 

  • Hoblit, F.M.: Gust Loads on Aircraft: Concepts and Applications. AIAA Education Series. AIAA Inc., Washington, DC (1988)

    Book  Google Scholar 

  • Huffaker, R.M.: CO2 laser Doppler systems for the measurement of atmospheric winds and turbulence. Atmos. Technol. 1, 71–76 (1975)

    Google Scholar 

  • Inokuchi, H., Tanaka, H., Ando, T.: Development of an onboard doppler lidar for flight safety. J. Aircraft 46(4), 1411–1415 (2009)

    Article  Google Scholar 

  • Inokuchi, H., Tanaka, H., Ando, T.: Development of a long range airborne Doppler LIDAR. In: Proceedings of 27th Congress of International Council of the Aeronautical Sciences (ICAS), 10(3), (2010)

    Google Scholar 

  • Inokuchi, H., Furuta, M., Inagaki, T.: High altitude turbulence detection using an airborne Doppler lidar. In: Proceedings of 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, 7–12 June 2014

    Google Scholar 

  • Keeler, R.J., Serafin, R.J., Schwiesow, R.L., Lenschow, D.H., Vaughan, J.M., Woodfield, A.A.: An airborne laser air motion sensing system. Part I: Concept and preliminary experiment. J. Atmos. Oceanic Technol. 4(1), 113–127 (1987)

    Article  Google Scholar 

  • Köpp, F., Rahm, S., Smalikho, I.: Characterization of aircraft wake vortices by 2 μm pulsed Doppler lidar. J. Atmos. Oceanic Technol. 21(2), 194–206 (2004)

    Article  Google Scholar 

  • Lawrence Jr., J.D., McCormick, M.P., Melfi, S.H., Woodman, D.P.: Laser backscatter correlation with turbulent regions of the atmosphere. Appl. Phys. Lett. 12(3), 72–73 (1968)

    Article  Google Scholar 

  • Lilly, D.K., Waco, D.E., Adelfang, S.I.: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteorol. 13(4), 488–493 (1973)

    Article  Google Scholar 

  • Liu, Z.S., Liu, B.Y., Li, Z.G., Yan, Z.A., Wu, S.H., Sun, Z.B.: Wind measurements with incoherent Doppler lidar based on iodine filters at night and day. Appl. Phys. B 88(2), 327–335 (2007)

    Article  Google Scholar 

  • Liu, D., Hostetler, C., Miller, I., Cook, A., Hare, R., Harper, D., Hair, J.: Tilted pressure-tuned field-widened Michelson interferometer for high spectral resolution lidar. In SPIE Photonics Europe, pp. 84390P-84390P. International Society for Optics and Photonics, Apr (2012)

    Google Scholar 

  • Luce, H., Nakamura, T., Yamamoto, M.K., Yamamoto, M., Fukao, S.: MU radar and lidar observations of clear-air turbulence underneath cirrus. Mon. Weather Rev. 138(2), 438–452 (2010)

    Article  Google Scholar 

  • Matayoshi, N., Asaka, K., Okuno, Y.: Flight test evaluation of a helicopter airborne lidar. J. Aircraft 44(5), 1712–1720 (2007)

    Article  Google Scholar 

  • McGill, M.J., Spinhirne, J.D.: Comparison of two direct-detection Doppler lidar techniques. Opt. Eng. 37(10), 2675–2686 (1998)

    Article  Google Scholar 

  • McGill, M.J., Marzouk, M., Scott, V.S., Spinhirne, J.D.: Holographic circle-to-point converter with particular applications for lidar work. Opt. Eng. 36(8), 2171–2175 (1997)

    Article  Google Scholar 

  • Measures, R.M.: Laser Remote Sensing: Fundamentals and Applications. Wiley, New York, NY (1984)

    Google Scholar 

  • Melfi, S.H., Stickle, J.W.: Airborne laser-radar studies of the lower atmosphere. NASA-TN-D-5558 (1969)

    Google Scholar 

  • Misaka, T., Holzäpfel, F., Hennemann, I., Gerz, T., Manhart, M., Schwertfirm, F.: Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24(2), 025104 (2012)

    Article  Google Scholar 

  • Ottersten, H.: Atmospheric structure and radar backscattering in clear air. Rad. Sci. 4(12), 1179–1193 (1969)

    Article  Google Scholar 

  • Rabadan, G.J., Schmitt, N.P., Pistner, T., Rehm, W.: Airborne lidar for automatic feedforward control of turbulent in-flight phenomena. J. Aircraft 47(2), 392–403 (2010)

    Article  Google Scholar 

  • Rahm, S., Smalikho, I., Köpp, F.: Characterization of aircraft wake vortices by airborne coherent Doppler lidar. J. Aircraft 44(3), 799–805 (2007)

    Article  Google Scholar 

  • Reitebuch, O.: Wind lidar for atmospheric research. In: Schumann, U. (ed.) Atmospheric Physics, pp. 487–507. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y., Endemann, M., et al.: The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument. J. Atmos. Oceanic Technol. 26(12), 2501–2515 (2009)

    Article  Google Scholar 

  • Reiter, E.R., Burns, A.: The structure of clear-air turbulence derived from TOPCAT aircraft measurements. J. Atmos. Sci. 23(2), 206–212 (1966)

    Article  Google Scholar 

  • Schaffner, Ph.R., Daniels, T.S., West, L.L., Gimmestad, G.G., Lane, S.E., Burdette, E.M., Sharman, R.D.: Experimental validation of a forward looking interferometer for detection of clear air turbulence due to mountain waves. In: 4th AIAA Atmospheric and Space Environments Conference, New Orleans (2012)

    Google Scholar 

  • Schmitt, N., Rehm, W., Pistner, T., Zeller, P., Diehl, H., Navé, P.: Airborne direct detection UV lidar. In: Proceedings of 23rd International Laser Radar Conference, pp. 167–170. Nara, 24–28 July 2006

    Google Scholar 

  • Schumann, U. (ed.): Atmospheric physics. Springer, Heidelberg (2012)

    Google Scholar 

  • Serafimovich, A., Hoffmann, P., Peters, D., Lehmann, V.: Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars. Atmos. Chem. Phys. 5(2), 295–310 (2005)

    Article  Google Scholar 

  • Smalikho, I., Köpp, F., Rahm, S.: Measurement of atmospheric turbulence by 2 μm Doppler lidar. J. Atmos. Oceanic Technol. 22(11), 1733–1747 (2005)

    Article  Google Scholar 

  • Soreide, D.C., Bogue, R.K., Ehernberger, J., Hannon, S.M., Bowdle, D.A.: Airborne coherent LIDAR for advanced in-flight measurements (ACLAIM) – flight testing of the LIDAR sensor. NASA-H-2428 (2000)

    Google Scholar 

  • Spuler, S.M., Richter, D., Spowart, M.P., Rieken, K.: Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence. Appl. Optics 50(6), 842–851 (2011)

    Article  Google Scholar 

  • Targ, R., Steakley, B.C., Hawley, J.G., Ames, L.L., Forney, P., Swanson, D., Robinson, P.A.: Coherent lidar airborne wind sensor II: Flight-test results at 2 and 10 μm. Appl. Opt. 35(36), 7117–7127 (1996)

    Article  Google Scholar 

  • Teets Jr., E.H., Ashburn, C., Ehernberger, J., Bogue, R.: Turbulence and mountain wave conditions observed with an airborne 2-micron lidar. In: Remote Sensing, pp. 63670O. International Society for Optics and Photonics (2006)

    Google Scholar 

  • Theopold, F.A., Bösenberg, J.: Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment. J. Atmos. Oceanic Technol. 10(2), 165–179 (1993)

    Article  Google Scholar 

  • Vaughan, J.M., Brown, D.W., Nash, C., Alejandro, S.B., Koenig, G.G.: Atlantic atmospheric aerosol studies: 2. Compendium of airborne backscatter measurements at 10.6 μm. J. Geophys. Res. 100(D1), 1043–1065 (1995)

    Google Scholar 

  • Vaughan, J.M., Geddes, N.J., Flamant, P.H., Flesia, C.: Establishment of a backscatter coefficient and atmospheric database. ESA-CR12510 (1998)

    Google Scholar 

  • Veerman, H.P., Vrancken, P., Lombard, L.: Flight testing DELICAT – a promise for medium-range clear air turbulence protection. In: Proceedings of the 25th SFTE European Chapter Symposium together with SETP European Section, Lulea, 15–18 June 2014

    Google Scholar 

  • Verbeke, M.: LIDAR Airborne Aerodynamic Sensors – Thales Avionics. Presentation, In WAKENET-3 Europe/Greenwake Workshop, Palaiseau, 29–30 March 2010

    Google Scholar 

  • Vernin, J., Pelon, J.: Scidar/lidar description of a gravity wave and associated turbulence: preliminary results. Appl. Opt. 25(17), 2874–2877 (1986)

    Article  Google Scholar 

  • Vrancken, P., Wirth, M., Rempel, D., Ehret, G., Dolfi-Bouteyre, A., Lombard, L., Rondeau, Ph.: Clear air turbulence detection and characterisation in the DELICAT airborne lidar project. In: Proceedings of the 25th International Laser Radar Conference (ILRC), Saint Petersburg, 5–9 July 2010

    Google Scholar 

  • Vrancken, P., Wirth, M., Ehret, G., Witschas, B., Veerman, H., Tump, R., Barny, H., Rondeau, Ph., Dolfi-Bouteyre, A., Lombard, L.: Flight tests of the DELICAT airborne LIDAR system for remote clear air turbulence detection. In: Proceedings of the 27th International Laser Radar Conference (ILRC), New York, 5–10 July 2015

    Google Scholar 

  • Watkins, C.D., Browning, K.A.: The detection of clear air turbulence by radar. Phys. Technol. 4(1), 28 (1973)

    Article  Google Scholar 

  • Weaver, E.A.: Clear-air-turbulence detection using lasers. Conf. Proc. NASA Aircraft Saf. Operating Prob. 1, 89 (1971)

    Google Scholar 

  • Werner, C.: Doppler wind lidar. In: Weitkamp, pp. 325–354 (2005)

    Google Scholar 

  • Weitkamp, C. (ed.): Lidar: range-resolved optical remote sensing of the atmosphere. Springer, New York, NY (2005)

    Google Scholar 

  • Witschas, B., Lemmerz, C., Reitebuch, O.: Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh–Brillouin scattering. Opt. Lett. 39(7), 1972–1975 (2014)

    Article  Google Scholar 

  • Zilberman, A., Kopeika, N.S.: LIDAR measurements of atmospheric turbulence vertical profiles. In Lasers and Applications in Science and Engineering, pp. 288–297. International Society for Optics and Photonics, June (2004)

    Google Scholar 

  • Zilberman, A., Golbraikh, E., Kopeika, N.S., Virtser, A., Kupershmidt, I., Shtemler, Y.: Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence. Atmos. Res. 88(1), 66–77 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Oliver Reitebuch, Todd Lane, and Robert Sharman for the kind review of the present text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Sergej Vrancken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vrancken, P.S. (2016). Airborne Remote Detection of Turbulence with Forward-Pointing LIDAR. In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics