Skip to main content

Biomarkers and Other Methods for Assessing Patient Progress

  • Chapter
Pulmonary Hypertension

Abstract

Pulmonary arterial hypertension (PAH) is a rare disease with high morbidity and mortality. Early detection, appropriate assessment and management are key components to improve survival. Biomarkers that reflect underlying disease pathophysiology and correlate with disease progression and outcome may be useful in PAH. In this chapter, we discuss several biomarkers that have been investigated in PAH and will highlight their utility and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  2. Poste G. Bring on the biomarkers. Nature. 2011;469(7329):156–7.

    Article  CAS  PubMed  Google Scholar 

  3. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed Central  PubMed  Google Scholar 

  4. McLaughlin VV, Gaine SP, Howard LS, Leuchte HH, Mathier MA, Mehta S, et al. Treatment goals of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D73–81.

    Article  PubMed  Google Scholar 

  5. Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res: Off J Ital Pharmacol Soc. 2011;63(6):504–11.

    Article  CAS  Google Scholar 

  6. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993;328(24):1732–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nootens M, Kaufmann E, Rector T, Toher C, Judd D, Francis GS, et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26(7):1581–5.

    Article  CAS  PubMed  Google Scholar 

  8. Cacoub P, Dorent R, Maistre G, Nataf P, Carayon A, Piette C, et al. Endothelin-1 in primary pulmonary hypertension and the Eisenmenger syndrome. Am J Cardiol. 1993;71(5):448–50.

    Article  CAS  PubMed  Google Scholar 

  9. Cacoub P, Dorent R, Nataf P, Carayon A, Riquet M, Noe E, et al. Endothelin-1 in the lungs of patients with pulmonary hypertension. Cardiovasc Res. 1997;33(1):196–200.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart DJ, Levy RD, Cernacek P, Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med. 1991;114(6):464–9.

    Article  CAS  PubMed  Google Scholar 

  11. Galie N, Grigioni F, Bacchi-Reggiani L, Ussia G, Parlangeli R, Catanzariti P. Relation of endothelin-1 to survival in patients with primary pulmonary hypertension. Eur J Clin Invest. 1996;26 Suppl 1:273.

    Google Scholar 

  12. Rubens C, Ewert R, Halank M, Wensel R, Orzechowski HD, Schultheiss HP, et al. Big endothelin-1 and endothelin-1 plasma levels are correlated with the severity of primary pulmonary hypertension. Chest. 2001;120(5):1562–9.

    Article  CAS  PubMed  Google Scholar 

  13. Montani D, Souza R, Binkert C, Fischli W, Simonneau G, Clozel M, et al. Endothelin-1/endothelin-3 ratio: a potential prognostic factor of pulmonary arterial hypertension. Chest. 2007;131(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  14. Silva Marques J, Martins SR, Calisto C, Goncalves S, Almeida AG, de Sousa JC, et al. An exploratory panel of biomarkers for risk prediction in pulmonary hypertension: emerging role of CT-proET-1. J Heart Lung Transpl: Off Publ Int Soc Heart Transpl. 2013;32(12):1214–21.

    Article  Google Scholar 

  15. Shah R. Endothelins in health and disease. Eur J Intern Med. 2007;18(4):272–82.

    Article  CAS  PubMed  Google Scholar 

  16. Chin BS, Conway DS, Chung NA, Blann AD, Gibbs CR, Lip GY. Interleukin-6, tissue factor and von Willebrand factor in acute decompensated heart failure: relationship to treatment and prognosis. Blood Coagulation Fibrinolysis: Int J Haemostasis Thrombosis. 2003;14(6):515–21.

    Article  CAS  Google Scholar 

  17. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambless LE. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 1997;96(4):1102–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA. Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med. 2004;170(7):766–72.

    Article  PubMed  Google Scholar 

  19. Lopes AA, Maeda NY, Bydlowski SP. Abnormalities in circulating von Willebrand factor and survival in pulmonary hypertension. Am J Med. 1998;105(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lopes AA, Maeda NY, Goncalves RC, Bydlowski SP. Endothelial cell dysfunction correlates differentially with survival in primary and secondary pulmonary hypertension. Am Heart J. 2000;139(4):618–23.

    Article  CAS  PubMed  Google Scholar 

  21. Kawut SM, Horn EM, Berekashvili KK, Widlitz AC, Rosenzweig EB, Barst RJ. von Willebrand factor independently predicts long-term survival in patients with pulmonary arterial hypertension. Chest. 2005;128(4):2355–62.

    Article  CAS  PubMed  Google Scholar 

  22. Lopes AA, Barreto AC, Maeda NY, Cicero C, Soares RP, Bydlowski SP, et al. Plasma von Willebrand factor as a predictor of survival in pulmonary arterial hypertension associated with congenital heart disease. Brazilian J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al]. 2011;44(12):1269–75.

    CAS  Google Scholar 

  23. Veyradier A, Nishikubo T, Humbert M, Wolf M, Sitbon O, Simonneau G, et al. Improvement of von Willebrand factor proteolysis after prostacyclin infusion in severe pulmonary arterial hypertension. Circulation. 2000;102(20):2460–2.

    Article  CAS  PubMed  Google Scholar 

  24. Barnes T, Gliddon A, Dore CJ, Maddison P, Moots RJ, Group QUTS. Baseline vWF factor predicts the development of elevated pulmonary artery pressure in systemic sclerosis. Rheumatology. 2012;51(9):1606–9.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med. 2003;348(6):500–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan CC, Du L, Chu D, Cho AJ, Kido M, Wolf PL, et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci U S A. 2003;100(21):12331–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kumpers P, Nickel N, Lukasz A, Golpon H, Westerkamp V, Olsson KM, et al. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31(18):2291–300.

    Article  PubMed  CAS  Google Scholar 

  29. Bull TM, Golpon H, Hebbel RP, Solovey A, Cool CD, Tuder RM, et al. Circulating endothelial cells in pulmonary hypertension. Thromb Haemost. 2003;90(4):698–703.

    CAS  PubMed  Google Scholar 

  30. Smadja DM, Mauge L, Sanchez O, Silvestre JS, Guerin C, Godier A, et al. Distinct patterns of circulating endothelial cells in pulmonary hypertension. Eur Respir J. 2010;36(6):1284–93.

    Article  CAS  PubMed  Google Scholar 

  31. Levy M, Bonnet D, Mauge L, Celermajer DS, Gaussem P, Smadja DM. Circulating endothelial cells in refractory pulmonary hypertension in children: markers of treatment efficacy and clinical worsening. PLoS One. 2013;8(6), e65114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31.

    Article  CAS  PubMed  Google Scholar 

  33. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7.

    Article  CAS  PubMed  Google Scholar 

  34. Selimovic N, Bergh CH, Andersson B, Sakiniene E, Carlsten H, Rundqvist B. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur Respir J. 2009;34(3):662–8.

    Article  CAS  PubMed  Google Scholar 

  35. Quarck R, Nawrot T, Meyns B, Delcroix M. C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;53(14):1211–8.

    Article  CAS  PubMed  Google Scholar 

  36. Burke DL, Frid MG, Kunrath CL, Karoor V, Anwar A, Wagner BD, et al. Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L238–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3(3-4):311–22.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lund SA, Wilson CL, Raines EW, Tang J, Giachelli CM, Scatena M. Osteopontin mediates macrophage chemotaxis via alpha4 and alpha9 integrins and survival via the alpha4 integrin. J Cell Biochem. 2013;114(5):1194–202.

    Article  CAS  PubMed  Google Scholar 

  39. Lorenzen JM, Nickel N, Kramer R, Golpon H, Westerkamp V, Olsson KM, et al. Osteopontin in patients with idiopathic pulmonary hypertension. Chest. 2011;139(5):1010–7.

    Article  CAS  PubMed  Google Scholar 

  40. Doni A, Peri G, Chieppa M, Allavena P, Pasqualini F, Vago L, et al. Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells. Eur J Immunol. 2003;33(10):2886–93.

    Article  CAS  PubMed  Google Scholar 

  41. Mantovani A, Garlanda C, Doni A, Bottazzi B. Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J Clin Immunol. 2008;28(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Leary PJ, Jenny NS, Barr RG, Bluemke DA, Harhay MO, Heckbert SR, et al. Pentraxin-3 and the right ventricle: the Multi-Ethnic Study of Atherosclerosis-Right Ventricle Study. Pulm Circ. 2014;4(2):250–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Tamura Y, Ono T, Kuwana M, Inoue K, Takei M, Yamamoto T, et al. Human pentraxin 3 (PTX3) as a novel biomarker for the diagnosis of pulmonary arterial hypertension. PLoS One. 2012;7(9), e45834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Krenning G, Moonen JR, Harmsen MC. Pleiotropism of adiponectin: inflammation, neovascularization, and fibrosis. Circ Res. 2009;104(9):1029–31.

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci. 2006;110(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  46. Summer R, Fiack CA, Ikeda Y, Sato K, Dwyer D, Ouchi N, et al. Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol. 2009;297(3):L432–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.

    Article  CAS  PubMed  Google Scholar 

  48. Santos M, Reis A, Goncalves F, Ferreira-Pinto MJ, Cabral S, Torres S, et al. Adiponectin levels are elevated in patients with pulmonary arterial hypertension. Clin Cardiol. 2014;37(1):21–5.

    Article  PubMed  Google Scholar 

  49. Braghiroli A, Sacco C, Erbetta M, Ruga V, Donner CF. Overnight urinary uric acid: creatinine ratio for detection of sleep hypoxemia. Validation study in chronic obstructive pulmonary disease and obstructive sleep apnea before and after treatment with nasal continuous positive airway pressure. Am Rev Respir Dis. 1993;148(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  50. Leyva F, Anker S, Swan JW, Godsland IF, Wingrove CS, Chua TP, et al. Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J. 1997;18(5):858–65.

    Article  CAS  PubMed  Google Scholar 

  51. Nagaya N, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Nakanishi N, et al. Serum uric acid levels correlate with the severity and the mortality of primary pulmonary hypertension. Am J Respir Crit Care Med. 1999;160(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  52. Bendayan D, Shitrit D, Ygla M, Huerta M, Fink G, Kramer MR. Hyperuricemia as a prognostic factor in pulmonary arterial hypertension. Respir Med. 2003;97(2):130–3.

    Article  CAS  PubMed  Google Scholar 

  53. Joshi K, Anjum F, Gowda S, Damania D, Graham-Hill S, Gillette P, et al. Uric Acid as a potential biomarker of pulmonary arterial hypertension in patients with sickle cell disease. Indian J Hematol Blood Transfusion: Off J Indian Soc Hematol Blood Trans. 2011;27(2):96–100.

    Article  Google Scholar 

  54. Cracowski JL, Degano B, Chabot F, Labarere J, Schwedhelm E, Monneret D, et al. Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension. Chest. 2012;142(4):869–76.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang R, Sun ML, Fan YF, Jiang X, Zhao QH, He J, et al. Plasma 15-F2t-isoprostane in idiopathic pulmonary arterial hypertension. Int J Cardiol. 2014;175(2):268–73.

    Article  PubMed  Google Scholar 

  56. Yap LB, Mukerjee D, Timms PM, Ashrafian H, Coghlan JG. Natriuretic peptides, respiratory disease, and the right heart. Chest. 2004;126(4):1330–6.

    Article  CAS  PubMed  Google Scholar 

  57. Foris V, Kovacs G, Tscherner M, Olschewski A, Olschewski H. Biomarkers in pulmonary hypertension: what do we know? Chest. 2013;144(1):274–83.

    Article  CAS  PubMed  Google Scholar 

  58. Bando M, Ishii Y, Sugiyama Y, Kitamura S. Elevated plasma brain natriuretic peptide levels in chronic respiratory failure with cor pulmonale. Respir Med. 1999;93(7):507–14.

    Article  CAS  PubMed  Google Scholar 

  59. Morrison LK, Harrison A, Krishnaswamy P, Kazanegra R, Clopton P, Maisel A. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea. J Am Coll Cardiol. 2002;39(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  60. Elstein D, Nir A, Klutstein M, Rudensky B, Zimran A. C-reactive protein and NT-proBNP as surrogate markers for pulmonary hypertension in Gaucher disease. Blood Cells Mol Dis. 2005;34(3):201–5.

    Article  CAS  PubMed  Google Scholar 

  61. Kucher N, Printzen G, Doernhoefer T, Windecker S, Meier B, Hess OM. Low pro-brain natriuretic peptide levels predict benign clinical outcome in acute pulmonary embolism. Circulation. 2003;107(12):1576–8.

    Article  PubMed  Google Scholar 

  62. Kucher N, Printzen G, Goldhaber SZ. Prognostic role of brain natriuretic peptide in acute pulmonary embolism. Circulation. 2003;107(20):2545–7.

    Article  CAS  PubMed  Google Scholar 

  63. Leuchte HH, Neurohr C, Baumgartner R, Holzapfel M, Giehrl W, Vogeser M, et al. Brain natriuretic peptide and exercise capacity in lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2004;170(4):360–5.

    Article  PubMed  Google Scholar 

  64. Nagaya N, Nishikimi T, Okano Y, Uematsu M, Satoh T, Kyotani S, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31(1):202–8.

    Article  CAS  PubMed  Google Scholar 

  65. Nagaya N, Sasaki N, Ando M, Ogino H, Sakamaki F, Kyotani S, et al. Prostacyclin therapy before pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension. Chest. 2003;123(2):338–43.

    Article  CAS  PubMed  Google Scholar 

  66. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102(8):865–70.

    Article  CAS  PubMed  Google Scholar 

  67. Leuchte HH, Holzapfel M, Baumgartner RA, Ding I, Neurohr C, Vogeser M, et al. Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol. 2004;43(5):764–70.

    Article  CAS  PubMed  Google Scholar 

  68. Leuchte HH, Holzapfel M, Baumgartner RA, Neurohr C, Vogeser M, Behr J. Characterization of brain natriuretic peptide in long-term follow-up of pulmonary arterial hypertension. Chest. 2005;128(4):2368–74.

    Article  CAS  PubMed  Google Scholar 

  69. Hammerer-Lercher A, Neubauer E, Muller S, Pachinger O, Puschendorf B, Mair J. Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction. Clinica Chimica Acta; Int J Clin Chem. 2001;310(2):193–7.

    Article  CAS  Google Scholar 

  70. Andreassen AK, Wergeland R, Simonsen S, Geiran O, Guevara C, Ueland T. N-terminal pro-B-type natriuretic peptide as an indicator of disease severity in a heterogeneous group of patients with chronic precapillary pulmonary hypertension. Am J Cardiol. 2006;98(4):525–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fijalkowska A, Kurzyna M, Torbicki A, Szewczyk G, Florczyk M, Pruszczyk P, et al. Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest. 2006;129(5):1313–21.

    Article  CAS  PubMed  Google Scholar 

  72. Mauritz GJ, Rizopoulos D, Groepenhoff H, Tiede H, Felix J, Eilers P, et al. Usefulness of serial N-terminal pro-B-type natriuretic peptide measurements for determining prognosis in patients with pulmonary arterial hypertension. Am J Cardiol. 2011;108(11):1645–50.

    Article  CAS  PubMed  Google Scholar 

  73. Soon E, Doughty NJ, Treacy CM, Ross RM, Toshner M, Upton PD, et al. Log-transformation improves the prognostic value of serial NT-proBNP levels in apparently stable pulmonary arterial hypertension. Pulm Circ. 2011;1(2):244–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Souza R, Bogossian HB, Humbert M, Jardim C, Rabelo R, Amato MB, et al. N-terminal-pro-brain natriuretic peptide as a haemodynamic marker in idiopathic pulmonary arterial hypertension. Eur Respir J. 2005;25(3):509–13.

    Article  CAS  PubMed  Google Scholar 

  75. Christenson RH, Azzazy HM, Duh SH, Maynard S, Seliger SL, Defilippi CR. Impact of increased body mass index on accuracy of B-type natriuretic peptide (BNP) and N-terminal proBNP for diagnosis of decompensated heart failure and prediction of all-cause mortality. Clin Chem. 2010;56(4):633–41.

    Article  CAS  PubMed  Google Scholar 

  76. DeFilippi C, van Kimmenade RR, Pinto YM. Amino-terminal pro-B-type natriuretic peptide testing in renal disease. Am J Cardiol. 2008;101(3A):82–8.

    Article  PubMed  CAS  Google Scholar 

  77. Raymond I, Groenning BA, Hildebrandt PR, Nilsson JC, Baumann M, Trawinski J, et al. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart. 2003;89(7):745–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Vickery S, Price CP, John RI, Abbas NA, Webb MC, Kempson ME, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis: Off J Nat Kidney Found. 2005;46(4):610–20.

    Article  CAS  Google Scholar 

  79. McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010;55(18):1915–22.

    Article  CAS  PubMed  Google Scholar 

  80. Galie N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117(23):3010–9.

    Article  CAS  PubMed  Google Scholar 

  81. Torbicki A, Kurzyna M, Kuca P, Fijalkowska A, Sikora J, Florczyk M, et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation. 2003;108(7):844–8.

    Article  CAS  PubMed  Google Scholar 

  82. Roy AK, McCullagh BN, Segurado R, McGorrian C, Keane E, Keaney J, et al. Detection of high-sensitivity troponin in outpatients with stable pulmonary hypertension identifies a subgroup at higher risk of adverse outcomes. J Card Fail. 2014;20(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  83. Antman EM. Decision making with cardiac troponin tests. N Engl J Med. 2002;346(26):2079–82.

    Article  PubMed  Google Scholar 

  84. de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, Francois C, et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(8):780–9.

    Article  PubMed  CAS  Google Scholar 

  85. Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, et al. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  86. Morrell NW, Atochina EN, Morris KG, Danilov SM, Stenmark KR. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 1995;96(4):1823–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Morrell NW, Upton PD, Higham MA, Yacoub MH, Polak JM, Wharton J. Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor. Chest. 1998;114(1 Suppl):90S–1.

    Article  CAS  PubMed  Google Scholar 

  88. Morrell NW, Upton PD, Kotecha S, Huntley A, Yacoub MH, Polak JM, et al. Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors. Am J Physiol. 1999;277(3 Pt 1):L440–8.

    CAS  PubMed  Google Scholar 

  89. Zhang F, Hu Y, Xu Q, Ye S. Different effects of angiotensin II and angiotensin-(1-7) on vascular smooth muscle cell proliferation and migration. PLoS One. 2010;5(8), e12323.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15(3):277–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Preston IR, Sagliani KD, Warburton RR, Hill NS, Fanburg BL, Jaffe IZ. Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(10):L678–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, et al. Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation. 2011;123(11):1205–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Renard S, Paulin R, Breuils-Bonnet S, Simard S, Pibarot P, Bonnet S, et al. Pim-1: a new biomarker in pulmonary arterial hypertension. Pulm Circ. 2013;3(1):74–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Shah SJ, Thenappan T, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation. 2008;117(19):2475–83.

    Article  CAS  PubMed  Google Scholar 

  96. Kaiser R, Seiler S, Held M, Bals R, Wilkens H. Prognostic impact of renal function in precapillary pulmonary hypertension. J Intern Med. 2014;275(2):116–26.

    Article  CAS  PubMed  Google Scholar 

  97. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122(2):164–72.

    Article  PubMed  Google Scholar 

  98. Bavishi C, Ather S, Bambhroliya A, Jneid H, Virani SS, Bozkurt B, et al. Prognostic significance of hyponatremia among ambulatory patients with heart failure and preserved and reduced ejection fractions. Am J Cardiol. 2014;113(11):1834–8.

    Article  CAS  PubMed  Google Scholar 

  99. Hamaguchi S, Kinugawa S, Tsuchihashi-Makaya M, Matsushima S, Sakakibara M, Ishimori N, et al. Hyponatremia is an independent predictor of adverse clinical outcomes in hospitalized patients due to worsening heart failure. J Cardiol. 2014;63(3):182–8.

    Article  PubMed  Google Scholar 

  100. Forfia PR, Mathai SC, Fisher MR, Housten-Harris T, Hemnes AR, Champion HC, et al. Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(12):1364–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Campo A, Mathai SC, Le Pavec J, Zaiman AL, Hummers LK, Boyce D, et al. Outcomes of hospitalisation for right heart failure in pulmonary arterial hypertension. Eur Respir J. 2011;38(2):359–67.

    Article  CAS  PubMed  Google Scholar 

  102. Haddad F, Peterson T, Fuh E, Kudelko KT, de Jesus PV, Skhiri M, et al. Characteristics and outcome after hospitalization for acute right heart failure in patients with pulmonary arterial hypertension. Circ Heart Fail. 2011;4(6):692–9.

    Article  PubMed  Google Scholar 

  103. Rabinovitz A, Raiszadeh F, Zolty R. Association of hyponatremia and outcomes in pulmonary hypertension. J Card Fail. 2013;19(8):550–6.

    Article  PubMed  Google Scholar 

  104. Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transpl: Off Publ Int Soc Heart Transpl. 2011;30(8):904–11.

    Google Scholar 

  105. Belly MJ, Tiede H, Morty RE, Schulz R, Voswinckel R, Tanislav C, et al. HbA1c in pulmonary arterial hypertension: a marker of prognostic relevance? J Heart Lung Transpl: Off Publ Int Soc Heart Transpl. 2012;31(10):1109–14.

    Article  Google Scholar 

  106. D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.

    Article  PubMed  Google Scholar 

  107. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation. 2002;106(12):1477–82.

    Article  CAS  PubMed  Google Scholar 

  108. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol. 2002;40(4):780–8.

    Article  CAS  PubMed  Google Scholar 

  109. Barst RJ, Chung L, Zamanian RT, Turner M, McGoon MD. Functional class improvement and 3-year survival outcomes in patients with pulmonary arterial hypertension in the REVEAL Registry. Chest. 2013;144(1):160–8.

    Article  PubMed  Google Scholar 

  110. Hoeper MM, Huscher D, Ghofrani HA, Delcroix M, Distler O, Schweiger C, et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol. 2013;168(2):871–80.

    Article  PubMed  Google Scholar 

  111. Miyamoto S, Nagaya N, Satoh T, Kyotani S, Sakamaki F, Fujita M, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161(2 Pt 1):487–92.

    Article  CAS  PubMed  Google Scholar 

  112. Farber HW, Miller DP, McGoon MD, Frost AE, Benton WW, Benza RL. Predicting outcomes in pulmonary arterial hypertension based on the 6-minute walk distance. J Heart Lung Transpl: Off Publ Int Soc Heart Transpl. 2014.

    Google Scholar 

  113. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    Article  PubMed  Google Scholar 

  114. Vonk MC, Sander MH, van den Hoogen FH, van Riel PL, Verheugt FW, van Dijk AP. Right ventricle Tei-index: a tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective tissue diseases. Eur J Echocardiogr: J Work Group Echocardiogr Eur Soc Cardiol. 2007;8(5):317–21.

    Article  CAS  Google Scholar 

  115. Ogihara Y, Yamada N, Dohi K, Matsuda A, Tsuji A, Ota S, et al. Utility of right ventricular Tei-index for assessing disease severity and determining response to treatment in patients with pulmonary arterial hypertension. J Cardiol. 2014;63(2):149–53.

    Article  PubMed  Google Scholar 

  116. Yamada Y, Okuda S, Kataoka M, Tanimoto A, Tamura Y, Abe T, et al. Prognostic value of cardiac magnetic resonance imaging for idiopathic pulmonary arterial hypertension before initiating intravenous prostacyclin therapy. Circ J: Off J Japan Circ Soc. 2012;76(7):1737–43.

    Article  CAS  Google Scholar 

  117. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7.

    Article  PubMed  Google Scholar 

  118. Frost AE, Badesch DB, Miller DP, Benza RL, Meltzer LA, McGoon MD. Evaluation of the predictive value of a clinical worsening definition using 2-year outcomes in patients with pulmonary arterial hypertension: a REVEAL Registry analysis. Chest. 2013;144(5):1521–9.

    Article  PubMed  Google Scholar 

  119. Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, et al. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141(2):354–62.

    Article  PubMed  Google Scholar 

  120. Kane GC, Maradit-Kremers H, Slusser JP, Scott CG, Frantz RP, McGoon MD. Integration of clinical and hemodynamic parameters in the prediction of long-term survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1285–93.

    Article  PubMed  Google Scholar 

  121. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122(2):156–63.

    Article  PubMed  Google Scholar 

  122. Willis VC, et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Eur Respir J. 1997;65(10):2545–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana R. Preston MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-Naamani, N., Preston, I.R. (2016). Biomarkers and Other Methods for Assessing Patient Progress. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics