Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 237))

Abstract

The insecticide dimethoate, an organophosphate, was first introduced in 1962 for broad spectrum control of a wide range of insects including mites, flies, aphids, and plant hoppers. It is known to inhibit AChE activity like other organophosphates, resulting in nerve damage which may lead to death. In the environment, hydrolysis represents a major degradation pathway under alkaline conditions, whereas volatilization is not a major route of dissipation from either water or moist soils. Dimethoate is also degraded by microbes under anaerobic conditions and the major degradation product, omethoate, has been identified. Dimethoate has been found to adversely impact many organisms. In plants, photosynthesis and growth are highly impacted, whereas birds exhibit inhibition in brain enzyme activity, thus sublethal effects are apparent. Aquatic organisms are expected to be highly impacted via direct exposure and display changes in swimming behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Kuisi M (2002) Adsorption of dimethoate and 2,4-D on Jordan Valley soils and their environmental impacts. Environ Geol 42:666–671

    Article  CAS  Google Scholar 

  • Al-Jaghbir MT, Salhab AS, Hamarsheh FA (1992) Dermal and inhalation exposure to dimethoate. Arch Environ Contam Toxicol 22:358–361

    Article  CAS  Google Scholar 

  • Amara IB, Soudani N, Troudi A, Hakim A, Zeghal KM, Boudawara T, Zeghal N (2012) Dimethoate induced oxidative damage and histopathological changes in lung of adult rats: modulatory effects of selsnium and/or vitamin E. Biomed Environ Sci 25(3):340–351

    Google Scholar 

  • Antonious GF, Ray ZM, Rivers L Jr (2007) Mobility of dimethoate residues from spring broccoli field. J Envrion Sci Health B 42:9–14

    Article  CAS  Google Scholar 

  • Anyusheva M, Lamers M, La N, Nguyen VV, Streck T (2012) Fate of pesticides in combined paddy rice- fish pond farming systems in northern Vietnam. J Environ Qual 41:515–525

    Article  CAS  Google Scholar 

  • Barker RJ, Lehner Y, Kunzmann MR (1980) Pesticides and honey bees: nectar and pollen contamination in alfalfa treated with dimethoate. Arch Environ Contam Toxicol 9:125–133

    Article  CAS  Google Scholar 

  • Beusen JM, Neven B (1989) Toxicity of dimethoate to Daphnia magna and freshwater fish. Bull Environ Contam Toxicol 42:126–133

    Article  CAS  Google Scholar 

  • Bohn WR (1964) Disappearance of dimethoate from soil. J Econ Entomol 57:798–799

    Article  Google Scholar 

  • CDPR (2003) Sampling for pesticide residues in California well water. 2003 Well inventory database cumulative report 1986–2003. http://www.cdpr.ca.gov/docs/emon/pubs/ehapreps/eh0308.pdf

  • CDPR (2013) Air monitoring network results for 2012, vol 2. Report AIR 13-02. http://www.cdpr.ca.gov/docs/emon/airinit/amn_2012_final_report_1013.pdf. Accessed 14 Oct 2014

  • CDPR (2014) Surface water protection program database. http://www.cdpr.ca.gov/docs/emon/surfwtr/surfcont.htm.Accessed 10 Aug 2014

  • Chen JQ, Wang D, Zhu MX, Gao CJ (2007) Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination 207:87–94

    Article  CAS  Google Scholar 

  • Chen J, Wang Z, Li G, Guo R (2014) The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress. Chemosphere 95:256–260

    Article  CAS  Google Scholar 

  • Chowdhury ABMNU, Jepson PC, Ford MG, Frampton GK (2005) The role of cuticular waxes and surface roughness in determining the insecticidal efficacy of deltamethrin and dimethoate applied as emulsifiable concentrates to leaf surfaces. Int J Pest Manag 51(4):253–263

    Article  CAS  Google Scholar 

  • Ciglasch H, Amelung W, Totrakool S, Kaupenjohann M (2005) Water flow patterns and pesticide fluxes in an upland soil in northern Thailand. Eur J Soil Sci 56:765–777

    CAS  Google Scholar 

  • Cordi B, Fossi C, Depledge M (1997) Temporal biomarker responses in wild passerine birds exposed to pesticide spray drift. Environ Toxicol Chem 16(10):2118–2124

    Article  CAS  Google Scholar 

  • DebMandal M, Mandal S, Pal NK, Aich A (2008) Potential metabolites of dimethoate produced by bacterial degradation. World J Microbiol Biotechnol 24:69–72

    Article  CAS  Google Scholar 

  • Deshpande NM, Dhakephalkar PK, Kanekar PP (2001) Plasmid-mediated dimethoate degradation in Pseudomonas aeruginosa MCMB-427. Lett Appl Microbiol 33:275–279

    Article  CAS  Google Scholar 

  • Dogan D, Can C (2011) Endorcirne disruption and altered biochemical indices in male Oncorhynchus mykiss in response to dimethoate. Pest Biochem Phys 99:157–161

    Article  CAS  Google Scholar 

  • Domingues I, Guilhermino L, Soares AMVM, Nogueira AJA (2007) Assessing the dimethoate contamination in temperate and tropical climates: potential use of biomarkers in bioassays with two chironomid species. Chemosphere 69:145–154

    Article  CAS  Google Scholar 

  • Druzina B, Stegu M (2007) Degradation study of selected organophosphorus insecticides in natural waters. Int J Environ Anal Chem 87(15):1079–1093

    Article  CAS  Google Scholar 

  • El Beit IOD, Wheelock JV, Cotton DE (1977a) Factors affecting the accumulation of dimethoate in soil. Int J Environ Stud 11:187–196

    Article  Google Scholar 

  • El Beit IOD, Wheelock JV, Cotton DE (1977b) Factors affecting the fate of dimethoate in soils. Int J Environ Stud 11:113–124

    Article  Google Scholar 

  • El Beit IOD, Wheelock JV, Cotton DE (1978) Factors influencing the degradation of dimethoate in soils and solutions. Int J Environ Stud 11:253–260

    Article  Google Scholar 

  • El-Saeid MH, Al-Turki AM, Al-Wable MI, Abdel-Nasser G (2011) Evaluation of pesticide residues in Saudi Arabia ground water. Res J Environ Sci 5(2):171–178

    Article  CAS  Google Scholar 

  • Ensminger M, Bergin R, Spurlock F (2009) Pesticide concentrations in water and sediment and associated invertebrate toxicity in Del Puerto and Orestimba Creeks, California. California Department of Pesticide Regulation: Report 243

    Google Scholar 

  • Evgenidou E, Konstantinou I, Fytianos K, Albanis T (2006) Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism. J Hazard Mater B137:1056–1064

    Article  Google Scholar 

  • Farag AT, Karkour TAZ, El Okazy A (2006) Developmental toxicity of orally administered technical dimethoate in rats. Birth Defect Res B 77:40–46

    Article  CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  Google Scholar 

  • Gao J, Liu L, Liu X, Zhou H, Lu J, Juang S, Wang Z (2009) The occurrence and spatial distribution of organophosphorus pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229

    Article  CAS  Google Scholar 

  • Gomis J, Arques A, Amat AM, Marin ML, Miranda MA (2012) A mechanistic study on photocatalysis by thiapyrylium salts. Photodegradationof dimethoate, alachlor and pyrimethanil under simulated sunlight. Appl Catal B Environ 123–124:208–213

    Article  Google Scholar 

  • Guo R, Ren X, Ren H (2012) Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bull Environ Contam Toxicol 89:568–571

    Article  CAS  Google Scholar 

  • Jepson PC, Efe E, Wiles JA (1995) The toxicity of dimethoate to predatory coleopteran: developing an approach to risk analysis for broad-spectrum pesticides. Arch Environ Contam Toxicol 28:500–507

    Article  CAS  Google Scholar 

  • Kolbe A, Bernasch A, Stock M, Schutte HR, Dedek W (1991) Persistence of the insecticide dimethoate in three different soils under laboratory conditions. Bull Environ Contam Toxicol 46:492–498

    Article  CAS  Google Scholar 

  • Kumar A, Correll R, Grocke S, Bajet C (2010) Toxicity of selected pesticides to freshwater shrimp, Paratya australiensis (Decapoda: Atyidae): use of time series acute toxicity data to predict chronic lethality. Ecotoxicol Environ Saf 73:360–369

    Article  CAS  Google Scholar 

  • Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 29:1246–1254

    Article  CAS  Google Scholar 

  • Li R, Zheng J, Wang R, Song Y, Chen Q, Yang X, Li S, Jiang J (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int Biodeter Biodegr 64:51–57

    Article  CAS  Google Scholar 

  • Liang Y, Zeng F, Qiu G, Lu X, Liu X, Gao H (2009) Co-metabolic degradation of dimethoate by Raoultella sp. X1. Biodegradation 20:363–373

    Article  CAS  Google Scholar 

  • Liu YH, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microb 67(8):3746–3749

    Article  CAS  Google Scholar 

  • Loewy RM, Carvajal LG, Novelli M, Pechen de D’Angelo AM (2003) Effect of pesticide use in fruit production orchards on shallow ground water. J Environ Sci Health B 38(3):317–325

    Article  CAS  Google Scholar 

  • Long SM, Dawson A, Shore RF (2006) A comparison of the effects of single and repeated exposure to an organophosphate insecticide on acetylcholinesterase activity in mammals. Environ Toxicol Chem 25(7):1857–1863

    Article  CAS  Google Scholar 

  • Lundebye AK, Curtis TM, Braven J, Depledge MH (1997) Effects of the organophosphorous pesticide, dimethoate, on cardiac and acetylcholinesterase (AChE) activity in the shore crab Carcinus maenas. Aquat Toxicol 40:23–36

    Article  CAS  Google Scholar 

  • Martin PA, Johnson DL, Forsyth DJ (1996) Effects of grasshopper-control insecticides on survival and brain acetylcholinesterase of pheasant (Phasianus colchicus) chicks. Environ Toxicol Chem 15(4):518–524

    Article  CAS  Google Scholar 

  • Mirajkar N, Pope CN (2005) Dimethoate. Encyclopedia of toxiocology. United States Environmental Protection Agency, Washington, DC, pp 47–49

    Book  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigmants and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pest Biochem Phys 92:30–37

    Article  CAS  Google Scholar 

  • Monsalvo VM, Garcia-Mancha N, Puyol D, Mohedano AF, Rodriguez JJ (2014) Anaerobic biodegradability of mixtures of pesticides in an expanded granular sludge bed reactor. Water Sci Technol 69(3):532–538

    Article  CAS  Google Scholar 

  • National Pesticide Information Center (NPIC) (2014) OSU extension pesticide properties database. http://npic.orst.edu/ingred/ppdmove.htm. Accessed 20 Feb 2015

  • Nikolaki MD, Oreopoulou AG, Phillippopoulos CJ (2005) Photo-fenton assisted reaction of dimethoate in aqueous solutions. J Environ Sci Health B 40:233–246

    Article  CAS  Google Scholar 

  • Pandey JK, Gopal R (2011) Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. J Fluoresc 21:785–791

    Article  CAS  Google Scholar 

  • Pandey RK, Singh RN, Singh S, Singh NN, Das VK (2009) Acute toxicity bioassay of dimethoate on freshwater airbreathing catfish, Heteropneustes fossilis (Bloch). J Environ Biol 30(3):437–440

    CAS  Google Scholar 

  • PPDB (2014) The pesticide properties database. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/244.htm. Accessed 10 Aug 2014

  • Roast SD, Thompson RS, Donkin P, Widdows J, Jones MB (1999) Toxicity of the organophosphate pesticides chlorpyrifos and dimethoate to Neomysis integer (Crustacea: Mysidacea). Water Res 33(2):319–326

    Article  CAS  Google Scholar 

  • Ruzicka JH, Thomson J, Wheals BB (1967) The gas chromatographic determination of organophosphorous pesticides. Part II. A comparative study of hydrolysis rates. J Chromatogr 31:37–47

    Article  CAS  Google Scholar 

  • Sangchan W, Bannwarth M, Ingwersen J, Hugenschmidt C, Schwadorf K, Thavornyutikarn P, Pansombat K, Streck T (2014) Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environ Monit Assess 186:1083–1099

    Article  CAS  Google Scholar 

  • Satapornvanit K, Baird DJ, Little DC (2009) Laboratory toxicity test and post-exposure feeding inhibition using the giant freshwater prawn Macrobrachium rosenbergii. Chemosphere 74:1209–1215

    Article  CAS  Google Scholar 

  • Schmalko ME, Ramallo LA, Ferreira D, Berlingheri RD (2002) Dimethoate degradation in plants and during processing of yerba mate leaves. Braz Arch Biol Technol 45(4):419–422

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. Office of Pesticide Programs (2008) Revised interim reregistration eligibility decisions for dimethoate. Pesticides and toxic substances. US Environmental Protection Agency Office of Prevention, Washington, DC

    Google Scholar 

  • Vagi MC, Petsas AS, Kostopoulou MN, Lekkas TD (2010) Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. Int J Environ Anal Chem 90:369–389

    Article  CAS  Google Scholar 

  • Vontas JG, Cosmidis N, Loukas M, Tsakas S, Hejazi MJ, Ayoutanti A, Hemingway J (2001) Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pest Biochem Phys 71:124–132

    Article  CAS  Google Scholar 

  • Waller GD, Barker RJ (1979) Effects of dimethoate on honey bee colonies. J Econ Entomol 72:549–551

    Article  CAS  Google Scholar 

  • Westlake GE, Bunyan PJ, Martin AD, Stanley PI, Steed LC (1981) Organophosphate poisoning. Effects of selected organophosphate pesticides on plasma enzymes and brain esterases of Japanese quail (Coturnix coturnix japonica). J Agric Food Chem 29:772–778

    Article  CAS  Google Scholar 

  • World Health Organization (2004) Dimethoate in drinking-water. Background document for the development of WHO Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • Wu J, Fan D (1997) Degradation of dimethoate in chrysanthemums and soil. Bull Environ Contam Toxicol 59:564–569

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to April Van Scoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Scoy, A., Pennell, A., Zhang, X. (2016). Environmental Fate and Toxicology of Dimethoate. In: de Voogt, W. (eds) Reviews of Environmental Contamination and Toxicology Volume 237. Reviews of Environmental Contamination and Toxicology, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-23573-8_3

Download citation

Publish with us

Policies and ethics