Skip to main content

An Extension of the Ehrenfeucht-Fraïssé Game for First Order Logics Augmented with Lindström Quantifiers

  • Chapter
  • First Online:
Fields of Logic and Computation II

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9300))

  • 778 Accesses

Abstract

We propose an extension of the Ehrenfeucht-Fraïssé game able to deal with logics augmented with Lindström quantifiers. We describe three different games with varying balance between simplicity and ease of use.

Dedicated to Yuri Gurevich on the occasion of his \( {75}{th}\) birthday.

Research partially supported by National Science Foundation grant no. DMS 1101597. Research partially supported by European Research Council grant 338821. Number 1059 on author’s list.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An undirected graph with no loops and no double edges is called a simple graph.

  2. 2.

    Of course, one may encode zero using the relation.

  3. 3.

    Notice that by our definition in 1. item (5) above, \(Q_0\) is always the existential quantifier, and so our definition coincides with the standard definition when relevant.

  4. 4.

    The atomic sentences appearing in \(\varphi (x)\) are \(x=y\) and \(x\sim y\).

  5. 5.

    \(\varphi \) expresses: “the complete graph \(K_{d(x)}\) is Hamiltonian” which is true when \(d(x)>2\) and false when \(d(x)=2\) (we may treat \(K_0\) and \(K_1\) separately, if needed).

  6. 6.

    We will describe a few variants, hence the subscript.

  7. 7.

    In this case, \(\mathbf {A}_\exists = P(V)\setminus \{\emptyset \}\), so \(\mathrm {Spoiler}\) may choose any non-empty subset \(S_\ell \) of \(V_\ell \).

  8. 8.

    We will consider only logics stronger than first-order, hence the existential quantifier is always assumed to be at \(\mathrm {Spoiler}\) ’ disposal and he will never lose in this manner.

  9. 9.

    We say that \(E_1\), an \((a,k,G_1)\)-equivalence class of a-tuples in \(G_1\) corresponds to \(E_2\) — a set of a-tuples in \(G_2\) if for any \(\bar{x}_1 \in E_1\) and \(\bar{x}_2 \in E_2\) one has

    $$\begin{aligned} G_1 \models \varphi (\bar{x}_1) \Leftrightarrow G_2 \models \varphi (\bar{x}_2) \end{aligned}$$

    for any \(\varphi \in \mathcal {L}\) of quantifier depth at most k.

References

  1. Arruda, A.I., Chuaqui, R., Da Costa, N.C.A. (eds.): Mathematical Logic in Latin America, Studies in Logic and the Foundations of Mathematics, vol. 99. North-Holland Publishing Company, Amsterdam (1980). Proceedings of the IV Latin American Symposium on Mathematical Logic held in Santiago, December 1978

    Google Scholar 

  2. Barwise, J.: On moschovakis closure ordinals. J. Symbolic Log. 42(2), 292–296 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosse, U.: An “Ehrenfeucht-Fraïssé game”for fixpoint logic and stratified fixpoint logic. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 100–114. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Cai, J.Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–419 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caicedo, X.: Back-and-forth systems for arbitrary quantifiers. In: Arruda et al. [1], Proceedings of the IV Latin American Symposium on Mathematical Logic held in Santiago, pp. 88–102, December 1978

    Google Scholar 

  6. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae 49, 129–141 (1961)

    MathSciNet  MATH  Google Scholar 

  8. Fraïssé, R.: Sur une nouvelle classification des systèmes de relations. Comptes rendus hebdomadaires des séances de l’Académie des sciences 230, 1022–1024 (1950). French

    MATH  Google Scholar 

  9. Fraïssé, R.: Sur quelques classifications des systèmes de relations. Ph.D. thesis, University of Paris (1953), published in [10]. (French)

    Google Scholar 

  10. Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publications Scientifiques de l’Université d’Alger, Série A, Alger-mathématiques, vol. 1, pp. 35–182 (1954). (French)

    Google Scholar 

  11. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci. 25(1), 76–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1998)

    MATH  Google Scholar 

  13. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer, New York (1990). Chapter 4

    Chapter  Google Scholar 

  14. Kolaitis, P.G., Väänänen, J.A.: Generalized quantifiers and pebble games on finite structures. Ann. Pure Appl. Log. 74(1), 23–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krawczyk, A., Krynicki, M.: Ehrenfeucht games for generalized quantifiers. In: Marek, W., Srebrny, M., Zarach, A. (eds.) Set Theory and Hierarchy Theory. Lecture Notes in Mathematics, vol. 537, pp. 145–152. Springer-Verlag, Berlin (Mar (1976)

    Google Scholar 

  16. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32(3), 186–195 (1966). http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1966.tb00600.x/abstract

    MathSciNet  MATH  Google Scholar 

  17. Lindström, P.: On characterizability in \({L}_{\omega _1\omega _0}\). Theoria 32(3), 165–171 (1966). http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1966.tb00598.x/abstract

    Article  MathSciNet  Google Scholar 

  18. Lindström, P.: On relations between structures. Theoria 32(3), 172–185 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindström, P.: On extensions of elementary logic. Theoria 35(1), 1–11 (1969). http://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1969.tb00356.x/pdf

    Article  MathSciNet  MATH  Google Scholar 

  20. Poizat, B.: Deux ou trois choses que je sais de \(l_n\). J. Symbolic Log. 47(3), 641–658 (1982). http://projecteuclid.org/euclid.jsl/1183741092

    Article  MathSciNet  MATH  Google Scholar 

  21. Weese, M.: Generalized ehrenfeucht games. Fundamenta Mathematicae 109(2), 103–112 (1980). http://eudml.org/doc/211151

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thanks the anonymous referees whose comments helped significantly in improving the presentation of this paper and in putting it in the right frame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simi Haber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haber, S., Shelah, S. (2015). An Extension of the Ehrenfeucht-Fraïssé Game for First Order Logics Augmented with Lindström Quantifiers. In: Beklemishev, L., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds) Fields of Logic and Computation II. Lecture Notes in Computer Science(), vol 9300. Springer, Cham. https://doi.org/10.1007/978-3-319-23534-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23534-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23533-2

  • Online ISBN: 978-3-319-23534-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics