Skip to main content

Image Analysis and Classification for High-Throughput Screening of Embryonic Stem Cells

  • Chapter
Mathematical Models in Biology

Abstract

Embryonic Stem Cells (ESCs) are of great interest for providing a resource to generate useful cell types for transplantation or novel therapeutic studies. However, molecular events controlling the unique ability of ESCs to self-renew as pluripotent cells or to differentiate producing somatic progeny have not been fully elucidated yet. In this context, the Colony Forming (CF) assay provides a simple, reliable, broadly applicable, and highly specific functional assay for quantifying undifferentiated pluripotent mouse ESCs (mESCs) with self-renewal potential. In this paper, we discuss first results obtained by developing and using automatic software tools, interfacing image processing modules with machine learning algorithms, for morphological analysis and classification of digital images of mESC colonies grown under standardized assay conditions. We believe that the combined use of CF assay and the software tool should enhance future elucidation of the mechanisms that regulate mESCs propagation, metastability, and early differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Detailed results may be supplied on demand.

References

  1. Bar, L., et al.: Mumford and Shah model and its applications to image segmentation and image restoration. Handbook of Mathematical Methods in Imaging, vol. I, pp. 1095–1157. Springer, New York (2011)

    Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    Google Scholar 

  3. Carpenter, A., Jones, T., Lamprecht, M., Clarke, C., Kang, I., Friman, O., Guertin, D., Chang, J., Lindquist, R., Moffat, J., Golland, P., Sabatini, D.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(R100) (2006)

    Google Scholar 

  4. Casalino, L., Comes, S., Lambazzi, G., De Stefano, B., Filosa, S., De Falco, S., De Cesare, D., Minchiotti, G., Patriarca, E.: Control of embryonic stem cell metastability by l-proline catabolism. J. Mol. Cell Biol. 3(2), 108– (2011)

    Google Scholar 

  5. Celebi, M., Kingravi, H., Uddin, B., Iyatomi, H., Aslandogan, Y., Stoecker, W., Moss, R.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Google Scholar 

  6. Chen CH Pau LF, W.P.: The Handbook of Pattern Recognition and Computer Vision (2nd Edition). World Scientific Publishing Co, Singapore (1998)

    Google Scholar 

  7. Cozza, V., Guarracino, M.R., Maddalena, L., Baroni, A.: Dynamic clustering detection through multi-valued descriptors of dermoscopic images. Stat. Med. 30, 2536–2550 (2011)

    Article  MathSciNet  Google Scholar 

  8. D’Ambra, P., Filippone, S.: A parallel generalized relaxation method for high-performance image segmentation on gpus. J. of Comput. Appl. Math. 293, 34–44 (2016)

    MathSciNet  Google Scholar 

  9. D’Ambra, P., Tartaglione, G.: Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method. Commun. Nonlinear Sci. Numer. Simul. 20, 819–831 (2015)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  11. Freund, Y., Schapire, R.E.: A short introduction to boosting. In: In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 1401–1406. Morgan Kaufmann (1999)

    Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Haralick, R., Shanmugam, K.: Computer classification of reservoir sandstones. IEEE Trans. Geosci. Electron. 11, 171–177 (1973)

    Article  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2 edn. Springer, New York (2013)

    Google Scholar 

  15. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  16. Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for moving object detection. Comp. Vision Image Underst. 122(0), 65–73 (2014)

    Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man and Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  18. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B, Burges, C, Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  20. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Google Scholar 

  21. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc, New York (1983)

    Google Scholar 

  22. Shariff, A., Kangas, J., Coelho, L., Quinn, S., Murphy, R.: Automated image analysis for high content screening and analysis. J. Biomol. Screening 15, 726–734 (2010)

    Article  Google Scholar 

  23. Tighe, A., Gudas, L.: Retinoic acid inhibits leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J Cell Physiol. 198(2), 223–229 (2004)

    Article  Google Scholar 

  24. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  25. Zhou, X., Wong, S.T.: Informatics challenges of high-throughput microscopy. IEEE Signal Process. Mag. 23, 63–72 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by public-private laboratory for the development of integrated informatics tools for genomics, proteomics and transcriptomics (LAB GPT), funded by MIUR. We also thank the Integrated Microscopy Facility at the IGB-ABT, CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqua D’Ambra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casalino, L. et al. (2015). Image Analysis and Classification for High-Throughput Screening of Embryonic Stem Cells. In: Zazzu, V., Ferraro, M., Guarracino, M. (eds) Mathematical Models in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-23497-7_2

Download citation

Publish with us

Policies and ethics