Skip to main content

Contrast-Enhanced Ultrasound (CEUS) and Elastographic Imaging

  • Chapter
Interventional Urology

Abstract

Ultrasound imaging has found applications in several areas of interventional urology prior to treatment (diagnosis), after treatment (follow-up), and also during treatment (monitoring/guidance). Contrast-enhanced ultrasound (CEUS) imaging and elastographic imaging are the two widely used imaging techniques. CEUS modalities, such as harmonic and multi-pulse imaging, are increasingly applied in interventional urology, because the contrast agents give a clear enhancement of blood vessels in the tissue. Among others, CEUS is used to study the microvasculature of the prostate and kidney for cancer detection to more accurately identify malignant lesions. Elastography is a technique that has been coined in 1991 for the quantification of elastic properties of biological tissue. Various elastographic techniques have been developed, such as Acoustic radiation force imaging (ARFI) and shear wave elastography. These techniques have found various applications in interventional urology such as monitoring the degree of fibrosis in renal allografts after transplantation and the identification of renal masses and prostatic lesions.

These enhanced ultrasound modalities represent novel techniques in the evaluation of the prostate and kidney in urology. There are multiple putative benefits of enhanced ultrasound modalities, including improved targeting for prostate biopsy; improved characterization of suspicious renal masses, especially when contrast-enhanced axial imaging (CT or MRI) are contraindicated; and lower cost than CT or MRI. Further investigations and refinements are necessary to define the role of these techniques in current urologic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol. 1968;3(5):356–66.

    Article  CAS  PubMed  Google Scholar 

  2. Main ML, Goldman JH, Grayburn PA. Ultrasound contrast agents: balancing safety versus efficacy. Expert Opin Drug Saf. 2009;8(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  3. Piscaglia F, et al. Knowledge of the bio-effects of ultrasound among physicians performing clinical ultrasonography: Results of a survey conducted by the Italian Society for Ultrasound in Medicine and Biology (SIUMB). J Ultrasound. 2009;12(1):6–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Frinking PJ, et al. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol. 2000;26(6):965–75.

    Article  CAS  PubMed  Google Scholar 

  5. Simpson DH, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372–82.

    Article  CAS  PubMed  Google Scholar 

  6. Mor-Avi V, et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001;104(3):352–7.

    Article  CAS  PubMed  Google Scholar 

  7. Phillips P, Gardner E. Contrast-agent detection and quantification. Eur Radiol. 2004;14 Suppl 8:P4–10.

    PubMed  Google Scholar 

  8. Wei K, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–83.

    Article  CAS  PubMed  Google Scholar 

  9. Eckersley RJ, et al. Quantitative microbubble enhanced transrectal ultrasound as a tool for monitoring hormonal treatment of prostate carcinoma. Prostate. 2002;51(4):256–67.

    Article  PubMed  Google Scholar 

  10. Greis C. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc. 2011;49(1–4):137–49.

    PubMed  Google Scholar 

  11. Mischi M, Kuenen MP, Wijkstra H. Angiogenesis imaging by spatiotemporal analysis of ultrasound contrast agent dispersion kinetics. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(4):621–9.

    Article  PubMed  Google Scholar 

  12. Ragde H, et al. Transrectal ultrasound microbubble contrast angiography of the prostate. Prostate. 1997;32(4):279–83.

    Article  CAS  PubMed  Google Scholar 

  13. Sedelaar JP, et al. Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol. 2001;40(3):285–93.

    Article  CAS  PubMed  Google Scholar 

  14. Bogers HA, et al. Contrast-enhanced three-dimensional power Doppler angiography of the human prostate: correlation with biopsy outcome. Urology. 1999;54(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  15. Roy C, et al. Contrast enhanced color Doppler endorectal sonography of prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J Urol. 2003;170(1):69–72.

    Article  PubMed  Google Scholar 

  16. Halpern EJ, et al. Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer. 2005;104(11):2373–83.

    Article  PubMed  Google Scholar 

  17. Kono Y, et al. Gray scale second harmonic imaging of the liver: a preliminary animal study. Ultrasound Med Biol. 1997;23(5):719–26.

    Article  CAS  PubMed  Google Scholar 

  18. Becher H, et al. Harmonic power Doppler contrast echocardiography: preliminary clinical results. Echocardiography. 1997;14(6 Pt 1):637.

    Article  PubMed  Google Scholar 

  19. Halpern EJ. Contrast-enhanced ultrasound imaging of prostate cancer. Rev Urol. 2006;8 Suppl 1:S29–37.

    PubMed Central  PubMed  Google Scholar 

  20. Russo G, et al. Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int. 2012;110(11 Pt C):E794–808.

    Article  PubMed  Google Scholar 

  21. Kuenen MP, et al. Spatiotemporal correlation of ultrasound contrast agent dilution curves for angiogenesis localization by dispersion imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(12):2665–9.

    Article  PubMed  Google Scholar 

  22. Kuenen MP, et al. Contrast-ultrasound dispersion imaging for prostate cancer localization by improved spatiotemporal similarity analysis. Ultrasound Med Biol. 2013;39(9):1631–41.

    Article  CAS  PubMed  Google Scholar 

  23. Wondergem N, De La Rosette JJ. HIFU and cryoablation – non or minimal touch techniques for the treatment of prostate cancer. Is there a role for contrast enhanced ultrasound? Minim Invasive Ther Allied Technol. 2007;16(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  24. Schoeppler GM, et al. Detection of urinary leakage after radical retropubic prostatectomy by contrast enhanced ultrasound – do we still need conventional retrograde cystography? BJU Int. 2010;106(11):1632–7.

    Article  PubMed  Google Scholar 

  25. De Stefani S, et al. Transrectal contrast-enhanced (Levovist) ultrasonography in evaluation of urinary leakage after radical prostatectomy: a preliminary report. Urology. 2005;66(4):871–3.

    Article  PubMed  Google Scholar 

  26. Sedelaar JP, et al. The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur Urol. 2000;37(5):559–68.

    Article  CAS  PubMed  Google Scholar 

  27. Brown JM, et al. Contrast enhanced sonography of visceral perfusion defects in dogs. J Ultrasound Med. 1997;16(7):493–9.

    CAS  PubMed  Google Scholar 

  28. Houtzager S, et al. Evaluation of renal masses with contrast-enhanced ultrasound. Curr Urol Rep. 2013;14(2):116–23.

    Article  CAS  PubMed  Google Scholar 

  29. Xu ZF, et al. Renal cell carcinoma and renal angiomyolipoma: differential diagnosis with real-time contrast-enhanced ultrasonography. J Ultrasound Med. 2010;29(5):709–17.

    PubMed  Google Scholar 

  30. Aoki S, et al. Contrast-enhanced ultrasound using a time-intensity curve for the diagnosis of renal cell carcinoma. BJU Int. 2011;108(3):349–54.

    Article  PubMed  Google Scholar 

  31. Park BK, et al. Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US. Eur J Radiol. 2007;61(2):310–4.

    Article  PubMed  Google Scholar 

  32. Grzelak P, et al. Detection of transplant renal artery stenosis in the early postoperative period with analysis of parenchymal perfusion with ultrasound contrast agent. Ann Transplant. 2013;18:187–94.

    Article  PubMed  Google Scholar 

  33. Eriksson P, et al. Non-invasive investigations of potential renal artery stenosis in renal insufficiency. Nephrol Dial Transplant. 2010;25(11):3607–14.

    Article  PubMed  Google Scholar 

  34. Valentino M, et al. Contrast-enhanced ultrasonography in blunt abdominal trauma: considerations after 5 years of experience. Radiol Med. 2009;114(7):1080–93.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao X, et al. Improved outcome of percutaneous radiofrequency ablation in renal cell carcinoma: a retrospective study of intraoperative contrast-enhanced ultrasonography in 73 patients. Abdom Imaging. 2012;37(5):885–91.

    Article  PubMed  Google Scholar 

  36. Ferramosca E, et al. Ultrasound-guided trans-hepatic embolization of a renal artery pseudoaneurysm in a patient with acquired solitary kidney and with chronic renal failure secondary to phenacetin abuse. J Ultrasound. 2014;17(1):65–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Meloni MF, et al. Follow-up after percutaneous radiofrequency ablation of renal cell carcinoma: contrast-enhanced sonography versus contrast-enhanced CT or MRI. AJR Am J Roentgenol. 2008;191(4):1233–8.

    Article  PubMed  Google Scholar 

  38. Barwari K, et al. Contrast-enhanced ultrasound for the evaluation of the cryolesion after laparoscopic renal cryoablation: an initial report. J Endourol. 2013;27(4):402–7.

    Article  PubMed  Google Scholar 

  39. Rennert J, et al. Identification of early complications following pancreas and renal transplantation using contrast enhanced ultrasound (CEUS) – first results. Clin Hemorheol Microcirc. 2014;58(2):343–52.

    Google Scholar 

  40. Fernandez CP, et al. Diagnosis of acute cortical necrosis in renal transplantation by contrast-enhanced ultrasound: a preliminary experience. Ultraschall Med. 2013;34(4):340–4.

    CAS  PubMed  Google Scholar 

  41. Nicolau C, et al. Accuracy of contrast-enhanced ultrasound in the detection of bladder cancer. Br J Radiol. 2011;84(1008):1091–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Drudi FM, et al. CEUS in the differentiation between low and high-grade bladder carcinoma. J Ultrasound. 2012;15(4):247–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lock G, et al. Early experience with contrast-enhanced ultrasound in the diagnosis of testicular masses: a feasibility study. Urology. 2011;77(5):1049–53.

    Article  PubMed  Google Scholar 

  44. Siracusano S, et al. Application of ultrasound contrast agents for the characterization of female urethral vascularization in healthy pre- and postmenopausal volunteers: preliminary report. Eur Urol. 2006;50(6):1316–22.

    Article  PubMed  Google Scholar 

  45. Dai Y, et al. Diagnosis of female urethral diverticulum using transvaginal contrast-enhanced sonourethrography. Int Urogynecol J. 2013;24(9):1467–71.

    Article  PubMed  Google Scholar 

  46. Frauscher F, et al. Comparison of contrast enhanced color Doppler targeted biopsy with conventional systematic biopsy: impact on prostate cancer detection. J Urol. 2002;167(4):1648–52.

    Article  PubMed  Google Scholar 

  47. Pelzer A, et al. Prostate cancer detection in men with prostate specific antigen 4 to 10 ng/ml using a combined approach of contrast enhanced color Doppler targeted and systematic biopsy. J Urol. 2005;173(6):1926–9.

    Article  PubMed  Google Scholar 

  48. Mitterberger M, et al. Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J Urol. 2007;178(2):464–8; discussion 468.

    Article  CAS  PubMed  Google Scholar 

  49. Halpern EJ, et al. Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double-blind trial of dutasteride pretreatment. J Urol. 2012;188(5):1739–45.

    Article  CAS  PubMed  Google Scholar 

  50. Ascenti G, et al. Complex cystic renal masses: characterization with contrast-enhanced US. Radiology. 2007;243(1):158–65.

    Article  PubMed  Google Scholar 

  51. Ophir J, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  52. Krouskop TA, et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.

    Article  CAS  PubMed  Google Scholar 

  53. Nightingale K, et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28(2):227–35.

    Article  PubMed  Google Scholar 

  54. Palmeri ML, Nightingale KR. On the thermal effects associated with radiation force imaging of soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(5):551–65.

    Article  PubMed  Google Scholar 

  55. Alizad A, Urban MW, Morris JC, et al. Application of vibro-acoustography in prostate tissue imaging. Med Phys. 2013;40(2):022902.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Urban MW, et al. Implementation of vibro-acoustography on a clinical ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(6):1169–81.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Sandrin L, et al. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):426–35.

    Article  PubMed  Google Scholar 

  58. Arndt R, Schmidt S, Loddenkemper C, Grünbaum M, Zidek W, van der Giet M, Westhoff TH. Noninvasive evaluation of renal allograft fibrosis by transient elastography – a pilot study. Transpl Int. 2010;23(9):871–7.

    PubMed  Google Scholar 

  59. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.

    Article  PubMed  Google Scholar 

  60. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 2012;28(1):13–20.

    Article  PubMed  Google Scholar 

  61. Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.

    Article  CAS  PubMed  Google Scholar 

  62. Parker KJ, et al. Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med Biol. 1990;16(3):241–6.

    Article  CAS  PubMed  Google Scholar 

  63. Pallwein L, et al. Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol. 2008;65(2):304–10.

    Article  PubMed  Google Scholar 

  64. Aigner F, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184(3):913–7.

    Article  PubMed  Google Scholar 

  65. Ahmad S, et al. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27(9):3280–7.

    Article  PubMed  Google Scholar 

  66. Tsutsumi M, et al. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. AJR Am J Roentgenol. 2010;194(6):W471–6.

    Article  PubMed  Google Scholar 

  67. Correas JM, Tissier AM, Khairoune A, et al. Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging. 2013;94(5):551–60.

    Article  PubMed  Google Scholar 

  68. Mitri FG, et al. In vitro comparative study of vibro-acoustography versus pulse-echo ultrasound in imaging permanent prostate brachytherapy seeds. Ultrasonics. 2009;49(1):31–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mitri FG, et al. Vibro-acoustography imaging of permanent prostate brachytherapy seeds in an excised human prostate – preliminary results and technical feasibility. Ultrasonics. 2009;49(3):389–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Emelianov SY, et al. Elasticity imaging for early detection of renal pathology. Ultrasound Med Biol. 1995;21(7):871–83.

    Article  CAS  PubMed  Google Scholar 

  71. Grenier N, et al. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.

    Article  CAS  PubMed  Google Scholar 

  72. Grenier N, et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012;22(10):2138–46.

    Article  PubMed  Google Scholar 

  73. Kallel F, et al. Elastographic imaging of low-contrast elastic modulus distributions in tissue. Ultrasound Med Biol. 1998;24(3):409–25.

    Article  CAS  PubMed  Google Scholar 

  74. Fahey BJ, et al. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol. 2008;53(1):279–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Mitri FG, Kinnick RR. Vibroacoustography imaging of kidney stones in vitro. IEEE Trans Biomed Eng. 2012;59(1):248–54.

    Article  PubMed  Google Scholar 

  76. Sommerer C, et al. Assessment of renal allograft fibrosis by transient elastography. Transpl Int. 2013;26(5):545–51.

    Article  CAS  PubMed  Google Scholar 

  77. Syversveen T, et al. Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification – a pilot study. Transpl Int. 2011;24(1):100–5.

    Article  PubMed  Google Scholar 

  78. Gennisson JL, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–67.

    Article  PubMed  Google Scholar 

  79. Lee MJ, et al. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging. Eur J Radiol. 2013;82(6):e290–4.

    Article  PubMed  Google Scholar 

  80. Guo LH, et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013;8(7), e68925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Clevert DA, et al. Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc. 2009;43(1–2):95–107.

    PubMed  Google Scholar 

  82. Jedrzejewski G, et al. Testicular adrenal rest tumors in boys with congenital adrenal hyperplasia: 3D US and elastography – do we get more information for diagnosis and monitoring? J Pediatr Urol. 2013;9(6 Pt B):p. 1032–7.

    Article  Google Scholar 

  83. Ying H, et al. Quantitative assessment of bladder neck compliance by using transvaginal real-time elastography of women. Ultrasound Med Biol. 2013;39(10):1727–34.

    Article  PubMed  Google Scholar 

  84. Idzenga T, et al. Noninvasive 2-dimensional monitoring of strain in the detrusor muscle in patients with lower urinary tract symptoms using ultrasound strain imaging. J Urol. 2013;189(4):1402–8.

    Article  PubMed  Google Scholar 

  85. Konig K, et al. Initial experiences with real-time elastography guided biopsies of the prostate. J Urol. 2005;174(1):115–7.

    Article  PubMed  Google Scholar 

  86. Nelson ED, et al. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology. 2007;70(6):1136–40.

    Article  PubMed  Google Scholar 

  87. Pallwein L, et al. Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int. 2007;100(1):42–6.

    Article  PubMed  Google Scholar 

  88. Salomon G, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Eur Urol. 2008;54(6):1354–62.

    Article  PubMed  Google Scholar 

  89. Junker D, et al. Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: a whole-mount step-section analysis. AJR Am J Roentgenol. 2014;202(3):W263–9.

    Article  PubMed  Google Scholar 

  90. Aigner F, et al. Prostate cancer and extracapsular extension (ECE): assessment by sonoelastography in comparison to MRI – a preliminary study. Eur Rad Suppl. 2007;17(1):294.

    Google Scholar 

  91. Pallwein L, et al. Early prostate cancer detection: sonoelastography and endorectal MRI-guided targeted biopsy. Radiology. 2006;(Abstract #1409 (SSJ05–05)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wijkstra PhD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Idzenga, T. et al. (2016). Contrast-Enhanced Ultrasound (CEUS) and Elastographic Imaging. In: Rastinehad, A., Siegel, D., Pinto, P., Wood, B. (eds) Interventional Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-23464-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23464-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23463-2

  • Online ISBN: 978-3-319-23464-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics