Skip to main content

Imaging the Urinary Tract: Fundamentals of Ultrasound, Computed Tomography, and Magnetic Resonance Imaging

  • Chapter
Interventional Urology

Abstract

Ultrasound is a type of mechanical energy that produces vibrations as it traverses any given medium. These vibrations create varying areas of pressure. The alternations between areas of high and low pressure are measurable against time and termed the wave frequency with Hertz used as the unit of measurement. By convention, it is generally accepted that the speed of sound propagation is 1540 m/s, which represents the average speed at which sound travels in soft tissues. The unit of time of a cycle of the wave is called the period, and the distance between wave crests is termed wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bushberg JT, Boone JM. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  2. Resnick MI, Spirnak JP. Basic principles of ultrasound. In: Gillenwater JY, editor. Adult and pediatric urology, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  3. Scherzinger AL, Stamm E. Ultrasound-concepts and transducers. In: RSNA/AAPM Physics Modules members-only website. Retrieved from http://www.rsna.org/RSNA/AAPM_Online_Physics_Modules_.aspx.

  4. Feldman MK, Katyal S, Blackwood MS. US artifacts 1. Radiographics. 2009;29(4):1179–89.

    Article  PubMed  Google Scholar 

  5. Badler R, Bordia R, Venkataramanan N. Interaction of ultrasound tissue and Doppler. In: RSNA/AAPM Physics Modules members-only website. Retrieved from http://www.rsna.org/RSNA/AAPM_Online_Physics_Modules_.aspx.

  6. Evans KD, Layman R, Volz K. Image quality-artifacts-doppler-safety. In: RSNA/AAPM Physics Modules members-only website. Retrieved from http://www.rsna.org/RSNA/AAPM_Online_Physics_Modules_.aspx.

  7. Merritt CR. Doppler US: the basics. Radiographics. 1991;11(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  8. Daneman A, Navarro OM, Somers GR, Mohanta A, Jarrín JR, Traubici J. Renal pyramids: focused sonography of normal and pathologic processes 1. Radiographics. 2010;30(5):1287–307.

    Article  PubMed  Google Scholar 

  9. Hartman DS, Choyke PL, Hartman MS. From the RSNA refresher courses: a practical approach to the cystic renal mass 1. Radiographics. 2004;24 Suppl 1:S101–15.

    Article  PubMed  Google Scholar 

  10. Wagner BJ, Wong-You-Cheong JJ, Davis Jr CJ. Adult renal hamartomas. Radiographics. 1997;17(1):155–69.

    Article  CAS  PubMed  Google Scholar 

  11. Brown ED, Chen MY, Wolfman NT, Ott DJ, Watson Jr NE. Complications of renal transplantation: evaluation with US and radionuclide imaging 1. Radiographics. 2000;20(3):607–22.

    Article  CAS  PubMed  Google Scholar 

  12. Yacoub JH, Verma S, Moulton JS, Eggener S, Oto A. Imaging-guided prostate biopsy: conventional and emerging techniques. Radiographics. 2012;32(3):819–37.

    Article  PubMed  Google Scholar 

  13. Hernandez J, Thompson IM. Carcinoma core distribution in patients with palpable and nonpalpable prostate tumors. Cancer. 2005;103(9):1761–2.

    Article  PubMed  Google Scholar 

  14. Tamsel S, Killi R, Hekimgil M, Altay B, Soydan S, Demirpolat G. Transrectal ultrasound in detecting prostate cancer compared with serum total prostate‐specific antigen levels. J Med Imaging Radiat Oncol. 2008;52(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zisman A, Herbert M, Strauss S, Manor H, Liebovici D, Lindner A. Preoperative detection of locally advanced prostate cancer by using transrectal ultrasound‐guided staging prostate biopsy. The Prostate J. 2000;2(3):130–6.

    Article  Google Scholar 

  16. Avery LL, Scheinfeld MH. Imaging of penile and scrotal emergencies. Radiographics. 2013;33(3):721–40.

    Article  PubMed  Google Scholar 

  17. Aso C, Enríquez G, Fité M, Torán N, Piró C, Piqueras J, Lucaya J. Gray-scale and color Doppler sonography of scrotal disorders in children: an update 1. Radiographics. 2005;25(5):1197–214.

    Article  PubMed  Google Scholar 

  18. Pauroso S, Di Leo N, Fulle I, Di Segni M, Alessi S, Maggini E. Varicocele: ultrasonographic assessment in daily clinical practice. J Ultrasound. 2011;14(4):199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mahesh M. The AAPM/RSNA physics tutorial for residents: search for isotropic resolution in CT fr from conventional through multiple-Row detector. Radiographics. 2002;22(4):949–62.

    Article  PubMed  Google Scholar 

  20. Hartman R, Kawashima A, Takahashi N, Silva A, Vrtiska T, Leng S, Fletcher J, McCollough C. Applications of dual-energy CT in urologic imaging: an update. Radiol Clin North Am. 2012;50(2):191–205.

    Article  PubMed  Google Scholar 

  21. Song KD, Kim CK, Park BK, Kim B. Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. Am J Roentgenol. 2011;197(6):W1076–82.

    Article  Google Scholar 

  22. Neville AM, Gupta RT, Miller CM, Merkle EM, Paulson EK, Boll DT. Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology. 2011;259(1):173–83.

    Article  PubMed  Google Scholar 

  23. Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M, Stief CG, Hildebrandt H, Godoy MC, Finn ME, Stepansky F, Reiser MF, Macari M. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252(2):433–40.

    Article  PubMed  Google Scholar 

  24. Gnannt R, Fischer M, Goetti R, Karlo C, Leschka S, Alkadhi H. Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. Am J Roentgenol. 2012;198(1):138–44.

    Article  Google Scholar 

  25. Gupta RT, Ho LM, Marin D, Boll DT, Barnhart HX, Nelson RC. Dual-energy CT for characterization of adrenal nodules: initial experience. Am J Roentgenol. 2010;194(6):1479–83.

    Article  Google Scholar 

  26. Boll DT, Patil NA, Paulson EK, Merkle EM, Simmons WN, Pierre SA, Preminger GM. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition—pilot study 1. Radiology. 2009;250(3):813–20.

    Article  PubMed  Google Scholar 

  27. Zilberman DE, Ferrandino MN, Preminger GM, Paulson EK, Lipkin ME, Boll DT. In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol. 2010;184(6):2354–9.

    Article  CAS  PubMed  Google Scholar 

  28. Israel GM, Bosniak MA. How i do it: evaluating renal masses. Radiology. 2005;236(2):441–50.

    Article  PubMed  Google Scholar 

  29. Taneja R, Bhargava P, Cuevas C, Dighe MK. Common and less-common renal masses and masslike conditions. Radiol Clin North Am. 2012;50(2):245–57.

    Article  PubMed  Google Scholar 

  30. Birnbaum BA, Maki DD, Chakraborty DP, Jacobs JE, Babb JS. Renal cyst pseudoenhancement: evaluation with an anthropomorphic body CT phantom. Radiology. 2002;225(1):83–90.

    Article  PubMed  Google Scholar 

  31. Wang ZJ, Coakley FV, Fu Y, Joe BN, Prevrhal S, Landeras LA, Webb EM, Yeh BM. Renal cyst pseudoenhancement at multidetector CT: what Are the effects of number of detectors and peak tube voltage? Radiology. 2008;248(3):910–6.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ng CS, Wood CG, Silverman PM, Tannir NM, Tamboli P, Sandler CM. Renal cell carcinoma: diagnosis, staging, and surveillance. Am J Roentgenol. 2008;191(4):1220–32.

    Article  Google Scholar 

  33. Johnson CD, Dunnick NR, Cohan RH, Illescas FF. Renal adenocarcinoma: CT staging of 100 tumors. Am J Roentgenol. 1987;148(1):59–63.

    Article  CAS  Google Scholar 

  34. Hammond NA, Nikolaidis P, Miller FH. Infectious and inflammatory diseases of the kidney. Radiol Clin North Am. 2012;50(2):259–70.

    Article  PubMed  Google Scholar 

  35. Stunell H, Buckley O, Feeney J, Geoghegan T, Browne RFJ, Torreggiani WC. Imaging of acute pyelonephritis in the adult. Eur Radiol. 2007;17(7):1820–8.

    Article  CAS  PubMed  Google Scholar 

  36. Santucci RA, Wessells H, Bartsch G, Descotes J, Heyns CF, McAninch JW, Nash P, Schmidlin F. Evaluation and management of renal injuries: consensus statement of the renal trauma subcommittee. BJU Int. 2004;93(7):937–54.

    Article  CAS  PubMed  Google Scholar 

  37. Moore EE, Shackford SR, Pachter HL, McAninch JW, Browner BD, Champion HR, Flint LM, Gennarelli TA, Malangoni MA, Ramenofsky ML, Trafton PG. Organ injury scaling: spleen, liver, and kidney. J Trauma. 1989;29(12):1664–6.

    Google Scholar 

  38. Lee YJ, Oh SN, Rha SE, Byun JY. Renal trauma. Radiol Clin North Am. 2007;45(3):581–92.

    Article  PubMed  Google Scholar 

  39. Boulay I, Holtz P, Foley WD, White B, Begun FP. Ureteral calculi: diagnostic efficacy of helical CT and implications for treatment of patients. AJR Am J Roentgenol. 1999;172(6):1485–90.

    Article  CAS  PubMed  Google Scholar 

  40. Hamm M, Wawroschek F, Weckermann D, Knöpfle E, Häckel T, Häuser H, Krawczak G, Harzmann R. Unenhanced helical computed tomography in the evaluation of acute flank pain. Eur Urol. 2001;39(4):460–5.

    Article  CAS  PubMed  Google Scholar 

  41. Fielding JR, Fox LA, Heller H, Seltzer SE, Tempany CM, Silverman SG, Steele G. Spiral CT in the evaluation of flank pain: overall accuracy and feature analysis. J Comput Assist Tomogr. 1997;21(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  42. Katz DS, Lane MJ, Sommer FG. Unenhanced helical CT of ureteral stones: incidence of associated urinary tract findings. AJR Am J Roentgenol. 1996;166(6):1319–22.

    Article  CAS  PubMed  Google Scholar 

  43. Kambadakone AR, Eisner BH, Catalano OA, Sahani DV. New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics. 2010;30(3):603–23.

    Article  PubMed  Google Scholar 

  44. Berland LL, Silverman SG, Gore RM, Mayo-Smith WW, Megibow AJ, Yee J, Brink JA, Baker ME, Federle MP, Foley WD, Francis IR, Herts BR, Israel GM, Krinsky G, Platt JF, Shuman WP, Taylor AJ. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7(10):754–73.

    Article  PubMed  Google Scholar 

  45. Young Jr WF. The incidentally discovered adrenal mass. N Eng J Med. 2007;356(6):601–10.

    Article  CAS  Google Scholar 

  46. Taffel M, Haji-Momenian S, Nikolaidis P, Miller FH. Adrenal imaging: a comprehensive review. Radiol Clin North Am. 2012;50(2):219–43.

    Article  PubMed  Google Scholar 

  47. Boland GW, Lee M, Gazelle GS, Halpern EF, McNicholas MM, Mueller PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol. 1998;171(1):201–4.

    Article  CAS  PubMed  Google Scholar 

  48. Caoili EM, Korobkin M, Francis IR, Cohan RH, Platt JF, Dunnick NR, Raghupathi KI. Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology. 2002;222(3):629–33.

    Article  PubMed  Google Scholar 

  49. Johnson PT, Horton KM, Fishman EK. Adrenal imaging with multidetector CT: evidence-based protocol optimization and interpretative practice 1. Radiographics. 2009;29(5):1319–31.

    Article  PubMed  Google Scholar 

  50. Raisanen J, Shapiro B, Glazer GM, Desai S, Sisson JC. Plasma catecholamines in pheochromocytoma: effect of urographic contrast media. Am J Roentgenol. 1984;143(1):43–6.

    Article  CAS  Google Scholar 

  51. Mukherjee JJ, Peppercorn PD, Reznek RH, Patel V, Kaltsas G, Besser M, Grossman AB. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology. 1997;202(1):227–31.

    Article  PubMed  Google Scholar 

  52. Bessell-Browne R, O’Malley ME. CT of pheochromocytoma and paraganglioma: risk of adverse events with iv administration of nonionic contrast material. Am J Roentgenol. 2007;188(4):970–4.

    Article  Google Scholar 

  53. Mezhir JJ, Song J, Piano G, Testa G, Raman J, Al-Ahmadie HA, Angelos P. Adrenocortical carcinoma invading the inferior vena cava: case report and literature review. Endocr Pract. 2008;14(6):721–5.

    Article  PubMed  Google Scholar 

  54. Bhargava P, Dighe MK, Lee JH, Wang C. Multimodality imaging of ureteric disease. Radiol Clin North Am. 2012;50(2):271–99.

    Article  PubMed  Google Scholar 

  55. Chow LC, Kwan SW, Olcott EW, Sommer G. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. Am J Roentgenol. 2007;189(2):314–22.

    Article  Google Scholar 

  56. Chlapoutakis K, Theocharopoulos N, Yarmenitis S, Damilakis J. Performance of computed tomographic urography in diagnosis of upper urinary tract urothelial carcinoma, in patients presenting with hematuria: systematic review and meta-analysis. Eur J Radiol. 2010;73(2):334–8.

    Article  PubMed  Google Scholar 

  57. Mouli S, Casalino DD, Nikolaidis P. Imaging features of common and uncommon bladder neoplasms. Radiol Clin North Am. 2012;50(2):301–16.

    Article  PubMed  Google Scholar 

  58. Knox MK, Cowan NC, Rivers-Bowerman MD, Turney BW. Evaluation of multidetector computed tomography urography and ultrasonography for diagnosing bladder cancer. Clin Radiol. 2008;63(12):1317–25.

    Article  CAS  PubMed  Google Scholar 

  59. Sadow CA, Silverman SG, O’Leary MP, Signorovitch JE. Bladder cancer detection with CT urography in an academic medical center. Radiology. 2008;249(1):195–202.

    Article  PubMed  Google Scholar 

  60. Vikram R, Sandler CM, Ng CS. Imaging and staging of transitional cell carcinoma: part 1, lower urinary tract. Am J Roentgenol. 2009;192(6):1481–7.

    Article  Google Scholar 

  61. Chan DP, Abujudeh HH, Cushing Jr GL, Novelline RA. CT cystography with multiplanar reformation for suspected bladder rupture: experience in 234 cases. Am J Roentgenol. 2006;187(5):1296–302.

    Article  Google Scholar 

  62. Quagliano PV, Delair SM, Malhotra AK. Diagnosis of blunt bladder injury: a prospective comparative study of computed tomography cystography and conventional retrograde cystography. J Trauma Acute Care Surg. 2006;61(2):410–22.

    Article  Google Scholar 

  63. Balter S. An introduction to the physics of magnetic resonance imaging. Radiographics. 1987;7(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  64. Pooley RA. Fundamental physics of MR imaging. Radiographics. 2005;25(4):1087–99.

    Article  PubMed  Google Scholar 

  65. Plewes DB. The AAPM/RSNA physics tutorial for residents. Contrast mechanisms in spin-echo MR imaging. Radiographics. 1994;14(6):1389–404.

    Article  CAS  PubMed  Google Scholar 

  66. Price RR. The AAPM/RSNA physics tutorial for residents. Contrast mechanisms in gradient-echo imaging and an introduction to fast imaging. Radiographics. 1995;15(1):165–78.

    Article  CAS  PubMed  Google Scholar 

  67. Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31(1):4–18.

    Article  PubMed  Google Scholar 

  68. Pokharel SS, Macura KJ, Kamel IR, Zaheer A. Current MR imaging lipid detection techniques for diagnosis of lesions in the abdomen and pelvis. Radiographics. 2013;33(3):681–702.

    Article  PubMed  Google Scholar 

  69. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–82.

    Article  CAS  PubMed  Google Scholar 

  70. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics. 2009;29(6):1797–810.

    Article  PubMed  Google Scholar 

  71. Neil JJ. Measurement of water motion (apparent diffusion) in biological systems. Concepts Magn Reson. 1997;9(6):385–401.

    Article  CAS  Google Scholar 

  72. Leyendecker JR, Barnes CE, Zagoria RJ. MR urography: techniques and clinical applications. Radiographics. 2008;28(1):23–46.

    Article  PubMed  Google Scholar 

  73. Nolte-Ernsting CCA, Staatz G, Tacke J, Günther RW. MR urography today. Abdom Imaging. 2003;28(2):0191–209.

    Article  CAS  Google Scholar 

  74. Leyendecker JR, Gianini JW. Magnetic resonance urography. Abdom Imaging. 2009;34(4):527–40.

    Article  PubMed  Google Scholar 

  75. Lin E. Body MRI sequences: a conceptual framework. Appl Radiol. 2012;41(1):16–23.

    Google Scholar 

  76. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG, Froelich JW, Gimbel JR, Gosbee JW, Kuhni-Kaminski E, Larson PA, Lester Jr JW, Nyenhuis J, Schaefer DJ, Sebek EA, Weinreb J, Wilkoff BL, Woods TO, Lucey L, Hernandez D. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37(3):501–30.

    Article  PubMed  Google Scholar 

  77. Ho VB, Allen SF, Hood MN, Choyke PL. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology. 2002;224(3):695–700.

    Article  PubMed  Google Scholar 

  78. Hecht EM, Israel GM, Krinsky GA, Hahn WY, Kim DC, Belitskaya-Levy I, Lee VS. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology. 2004;232(2):373–8.

    Article  PubMed  Google Scholar 

  79. Herts BR, Coll DM, Novick AC, Obuchowski N, Linnell G, Wirth SL, Baker ME. Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. Am J Roentgenol. 2002;178(2):367–72.

    Article  Google Scholar 

  80. Roy C, Sauer B, Lindner V, Lang H, Saussine C, Jacqmin D. MR imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol. 2007;17(1):193–200.

    Article  PubMed  Google Scholar 

  81. Sun MR, Ngo L, Genega EM, Atkins MB, Finn ME, Rofsky NM, Pedrosa I. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology. 2009;250(3):793–802.

    Article  PubMed  Google Scholar 

  82. Newatia A, Khatri G, Friedman B, Hines J. Subtraction imaging: applications for nonvascular abdominal MRI. Am J Roentgenol. 2007;188(4):1018–25.

    Article  Google Scholar 

  83. Nikken JJ, Krestin GP. MRI of the kidney—state of the art. Eur Radiol. 2007;17(11):2780–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Silverman SG, Mortele KJ, Tuncali K, Jinzaki M, Cibas ES. Hyperattenuating renal masses: etiologies, pathogenesis, and imaging evaluation. Radiographics. 2007;27(4):1131–43.

    Article  PubMed  Google Scholar 

  85. Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG. Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology. 1997;205(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  86. Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG. Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol. 1995;165(3):579–83.

    Article  CAS  PubMed  Google Scholar 

  87. Varghese JC, Hahn PF, Papanicolaou N, Mayo-Smith WW, Gaa JA, Lee MJ. MR differentiation of phaeochromocytoma from other adrenal lesions based on qualitative analysis of T2 relaxation times. Clin Radiol. 1997;52(8):603–6.

    Article  CAS  PubMed  Google Scholar 

  88. Blake MA, Kalra MK, Maher MM, Sahani DV, Sweeney AT, Mueller PR, Hahn PF, Boland GW. Pheochromocytoma: an imaging chameleon. Radiographics. 2004;24 Suppl 1:S87–99.

    Article  PubMed  Google Scholar 

  89. Tekes A, Kamel I, Imam K, Szarf G, Schoenberg M, Nasir K, Thompson R, Bluemke D. Dynamic MRI of bladder cancer: evaluation of staging accuracy. Am J Roentgenol. 2005;184(1):121–7.

    Article  Google Scholar 

  90. Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, Trachtenberg J. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. Am J Roentgenol. 2007;189(2):323–8.

    Article  Google Scholar 

  91. Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, Yamamoto A, Tanimoto D, Ito K. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008;28(3):720–6.

    Article  PubMed  Google Scholar 

  92. Katahira K, Takahara T, Kwee TC, Oda S, Suzuki Y, Morishita S, Kitani K, Hamada Y, Kitaoka M, Yamashita Y. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol. 2011;21(1):188–96.

    Article  PubMed  Google Scholar 

  93. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ. Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics. 2011;31(3):677–703.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Vourganti S, Rastinehad A, Yerram NK, Nix J, Volkin D, Hoang A, Turkbey B, Gupta GN, Kruecker J, Linehan WM, Choyke PL, Wood BJ, Pinto PA. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol. 2012;188(6):2152–7.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Kim SH, Park S, Choi SH, Jeong WK, Choi JH. The efficacy of magnetic resonance imaging for the diagnosis of testicular rupture: a prospective preliminary study. J Trauma Acute Care Surg. 2009;66(1):239–42.

    Article  Google Scholar 

  96. Fernández-Pérez GC, Tardáguila FM, Velasco M, Rivas C, Dos Santos J, Cambronero J, Trinidad C, San Miguel P. Radiologic findings of segmental testicular infarction. Am J Roentgenol. 2005;184(5):1587–93.

    Article  Google Scholar 

  97. Tsili AC, Argyropoulou MI, Giannakis D, Sofikitis N, Tsampoulas K. MRI in the characterization and local staging of testicular neoplasms. Am J Roentgenol. 2010;194(3):682–9.

    Article  Google Scholar 

  98. Fedel M, Venz S, Andreessen R, Sudhoff F, Loening SA. The value of magnetic resonance imaging in the diagnosis of suspected penile fracture with atypical clinical findings. J Urol. 1996;155(6):1924–7.

    Article  CAS  PubMed  Google Scholar 

  99. Choi MH, Kim B, Ryu JA, Lee SW, Lee KS. MR imaging of acute penile fracture 1. Radiographics. 2000;20(5):1397–405.

    Article  CAS  PubMed  Google Scholar 

  100. Pretorius ES, Siegelman ES, Ramchandani P, Banner MP. MR imaging of the penis 1. Radiographics. 2001;21 Suppl 1:S283–98.

    Article  PubMed  Google Scholar 

  101. Chou CP, Levenson RB, Elsayes KM, Lin YH, Fu TY, Chiu YS, Huang JS, Pan HB. Imaging of female urethral diverticulum: an update. Radiographics. 2008;28(7):1917–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hines MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hines, J., Karajgikar, J.A., Giardina, J.D., Friedman, B. (2016). Imaging the Urinary Tract: Fundamentals of Ultrasound, Computed Tomography, and Magnetic Resonance Imaging. In: Rastinehad, A., Siegel, D., Pinto, P., Wood, B. (eds) Interventional Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-23464-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23464-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23463-2

  • Online ISBN: 978-3-319-23464-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics