Skip to main content

Advanced Numerical Methods for Semi-classical Transport Simulation in Ultra-Narrow Channels

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 628 Accesses

Abstract

In this work we present a semi-classical modeling and simulation approach for ultra-narrow channels that has been implemented as part of the Vienna Schrödinger-Poisson (VSP) simulation framework (Baumgartner, J Comput Electron 12:701–721, 2013; http://www.globaltcad.com/en/products/vsp.html (2014)) over the past few years. Our research has been driven by two goals: maintaining high physical accuracy of the models while producing a computationally efficient and flexible simulation code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, O., Stanojevic, Z., Schnass, K., Karner, M., Kosina, H.: VSP–a quantum-electronic simulation framework. J. Comput. Electron. 12, 701–721 (2013). doi:10.1007/s10825-013-0535-y. http://dx.doi.org/10.1007/s10825-013-0535-y

    Article  Google Scholar 

  2. Dimmock, J.O., Wright, G.B.: Band edge structure of PbS, PbSe, and PbTe. Phys. Rev. 135, A821–A830 (1964). doi:10.1103/PhysRev.135.A821. http://link.aps.org/doi/10.1103/PhysRev.135.A821

    Article  Google Scholar 

  3. Dresselhaus, G., Kip, A.F., Kittel, C.: Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev. 98, 368–384 (1955). doi:10.1103/PhysRev.98.368. http://link.aps.org/doi/10.1103/PhysRev.98.368

    Article  Google Scholar 

  4. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k⋅ p calculation of the hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94(2), 1079–1095 (2003). doi:http://dx.doi.org/10.1063/1.1585120. http://scitation.aip.org/content/aip/journal/jap/94/2/10.1063/1.1585120

  5. Hensel, J.C., Hasegawa, H., Nakayama, M.: Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys. Rev. 138(1A), A225–A238 (1965). doi:10.1103/PhysRev.138.A225

    Google Scholar 

  6. Kane, E.O.: Energy band structure in p-type germanium and silicon. J. Phys. Chem. Solids 1(1–2), 82–99 (1956). doi:http://dx.doi.org/10.1016/0022-3697(56)90014-2. http://www.sciencedirect.com/science/article/pii/0022369756900142

  7. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods (1998)

    Book  MATH  Google Scholar 

  8. Prange, R.E., Nee, T.W.: Quantum spectroscopy of the low-field oscillations in the surface impedance. Phys. Rev. 168, 779–786 (1968). doi:10.1103/PhysRev.168.779. http://link.aps.org/doi/10.1103/PhysRev.168.779

    Article  Google Scholar 

  9. Ramayya, E.B., Vasileska, D., Goodnick, S.M., Knezevic, I.: Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104(6), 063711 (2008). doi:10.1063/1.2977758. http://link.aip.org/link/?JAP/104/063711/1

    Article  Google Scholar 

  10. Stanojevic, Z., Kosina, H.: Surface-roughness-scattering in non-planar channels – the role of band anisotropy. In: International Conference on Simulation of Semiconductor Processes and Devices, pp. 352–355 (2013)

    Google Scholar 

  11. Stanojevic, Z., Karner, M., Kosina, H.: Exploring the design space of non-planar channels: shape, orientation, and strain. In: International Electron Device Meeting, pp. 332–335 (2013). doi:10.1109/IEDM.2013. 6724618

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Science Fund through contracts F2509 and I841-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Stanojević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Stanojević, Z., Baumgartner, O., Karner, M., Filipović, L., Kernstock, C., Kosina, H. (2016). Advanced Numerical Methods for Semi-classical Transport Simulation in Ultra-Narrow Channels. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_95

Download citation

Publish with us

Policies and ethics