Skip to main content

Decoupling the Interaction of Solid and Fluid Mechanics in the Modelling of Continuous Casting Processes

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 1157 Accesses

Abstract

The modelling of the continuous casting of metals is known to involve the complex interaction of non-isothermal fluid and solid mechanics. However, using asymptotic methods and an earlier numerical result obtained via computational fluid dynamics, we demonstrate how the motion of the liquid metal can be systematically decoupled from the stresses induced in the solidified shell. The resulting asymptotically reduced model can then serve as a computationally efficient module for stress mechanics models that aim to predict segregation and crack formation in the solid metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboutalebi, M.R., Hasan, M., Guthrie, R.I.L.: Coupled turbulent flow, heat and solute transport in continuous casting processes. Metall. Trans. B 26B, 731–744 (1995)

    Article  Google Scholar 

  2. Aboutalebi, M.R., Hasan, M., Guthrie, R.I.L.: Numerical study of coupled turbulent flow and solidification for steel slab casters. Numer. Heat Transfer A 28, 279–297 (1995)

    Article  Google Scholar 

  3. Amin, M.R., Greif, D.: Conjugate heat transfer during two-phase solidification process in a continuously moving metal using average heat capacity method. Int. J. Heat Mass Transfer 42, 2883–2985 (1999)

    Article  MATH  Google Scholar 

  4. Das, S.K., Sarkar, A.: Computational modelling of thermal transport phenomena in continuous casting process based on non-orthogonal control volume approach. Commun. Numer. Methods Eng. 12, 657–671 (1996)

    Article  MATH  Google Scholar 

  5. Lee, J.E., Han, H.N., Oh, K.H., Yoon., J.K.: A fully coupled analysis of fluid flow, heat transfer and stress in continuous round billet casting. ISIJ Int. 39, 435–444 (1999)

    Google Scholar 

  6. Mahmoudi, J.: Mathematical modelling of fluid flow, heat transfer and solidification in a strip continuous casting process. Int. J. Cast Met. Res. 19, 223–236 (2006)

    Article  Google Scholar 

  7. Mahmoudi, J., Vynnycky, M., Fredriksson, H.: Modelling of fluid flow, heat transfer, solidification in the strip casting of copper base alloy. Part 3. Solidification – a theoretical study. Scand. J. Metall. 30(3), 136–145 (2001)

    Google Scholar 

  8. Mahmoudi, J., Vynnycky, M., Sivesson, P., Fredriksson, H.: An experimental and numerical study on the modelling of fluid flow, heat transfer and solidification in a copper continuous strip casting process. Mater. Trans. 44(9), 1741–1751 (2003)

    Article  Google Scholar 

  9. Mitchell, S.L., Vynnycky, M.: An accurate finite-difference method for ablation-type stefan problems. J. Comput. Appl. Math. 236, 4181–4192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mitchell, S.L., Vynnycky, M.: On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions. J. Comput. Appl. Math. 264, 49–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vynnycky, M.: An asymptotic model for the formation and evolution of air gaps in vertical continuous casting. Proc. R. Soc. A 465, 1617–1644 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vynnycky, M.: On the onset of air-gap formation in vertical continuous casting with superheat. Int. J. Mech. Sci. 73, 69–76 (2013)

    Article  Google Scholar 

  13. Yao, M., Yin, H.B., Fang, D.C.: Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets. ISIJ Int. 44, 1696–1704 (2004)

    Article  Google Scholar 

  14. Yao, M., Yin, H., Wang, J.C., Fang, D.C., Liu, X., Yu, Y., Liu, J.J.: Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets. Ironmaking Steelmaking 32, 359–368 (2005)

    Article  Google Scholar 

  15. Zhang, L.F.: Computational fluid dynamics modeling: application to transport phenomena during the casting process. JOM 64, 1059–1062 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

SLM, BJF and SBGO’B acknowledge the support of the Mathematics Applications Consortium for Science and Industry (http://www.macsi.ul.ie), funded by the Science Foundation Ireland grant 12/IA/1683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Vynnycky, M., Mitchell, S.L., Florio, B.J., O’Brien, S.B.G. (2016). Decoupling the Interaction of Solid and Fluid Mechanics in the Modelling of Continuous Casting Processes. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_35

Download citation

Publish with us

Policies and ethics