Skip to main content

A Coq-Based Axiomatization of Tarski’s Mereogeometry

  • Conference paper
  • First Online:
Spatial Information Theory (COSIT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9368))

Included in the following conference series:

  • 1156 Accesses

Abstract

During the last decade, the domain of Qualitative Spatial Reasoning, has known a renewal of interest for mereogeometry, a theory that has been initiated by Tarski. Mereogeometry relies on mereology, the Leśniewski’s theory of parts and wholes that is further extended with geometrical primitives and appropriate definitions. However, most approaches (i) depart from the original Leśniewski’s mereology which does not assume usual sets as a basis, (ii) restrict the logical power of mereology to a mere theory of part-whole relations and (iii) require the introduction of a connection relation. Moreover, the seminal paper of Tarki shows up unclear foundations and we argue that mereogeometry as it is introduced by Tarski, can be more suited to extend the whole theory of Leśniewski. For that purpose, we investigate a type-theoretical representation of space more closely related with the original ideas of Leśniewski and expressed with the Coq language. We show that (i) it can be given a more clear foundation, (ii) it can be based on three axioms instead of four and (iii) it can serve as a basis for spatial reasoning with full compliance with Leśniewski’s systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most descriptions suffer from the misunderstanding that mereology is formally nothing more than a particular elementary theory of partial ordering.

  2. 2.

    The two argument categories are on the right side and the resulting category on the left side.

  3. 3.

    This is partly due to the destruction of most of his work during the second world war and to the difficulty to assess protothetic.

  4. 4.

    Known as Girard–Reynolds polymorphic lambda calculus. It extends STT by the introduction of a mechanism of universal quantification over types (second-order) and is itself extended in CIC.

  5. 5.

    Also called sort.

  6. 6.

    Called spheres in Tarski’s paper.

References

  1. Appel, A.W., Felty, A.P.: Dependent types ensure partial correctness of theorem provers. J. Funct. Program. 14(1), 3–19 (2004). Cambridge University Press

    Article  MathSciNet  MATH  Google Scholar 

  2. Asher, N., Vieu, L.: Toward a geometry of common sense: a semantics and a complete axiomatization of mereotopology. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal (1995)

    Google Scholar 

  3. Aurnague, M., Vieu, L.: A theory of space-time for natural language semantics. In: Korta, K., Larrazabal, J.M. (eds.) Semantics and Pragmatics of Natural Language: Logical and Computational Aspects. ILCLI Series I, pp. 69–126. Universidad Pais Vasco, San Sebastian (1995)

    Google Scholar 

  4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program. 13(2), 261–293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, B.: A categorical axiomatisation of region-based geometry. Fundam. Informaticae 46(1–2), 145–158 (2001)

    MATH  Google Scholar 

  6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2004)

    Book  Google Scholar 

  7. Bertot, Y., Théry, L.: Dependent types, theorem proving, and applications for a verifying compiler. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 173–181. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Betti, A., Loeb, I.: On Tarski’s foundations of the geometry of solids. Bull. Symbolic Logic 18(2), 230–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Betti, A.: Leśniewski, Tarski and the axioms of mereology. Chap. 11. In: Mulligan, K., et al. (eds.) The History and Philosophy of Polish Logic: Essays in Honour of Jan Woleński, pp. 242–258. Palgrave Macmillan, Basingstoke (2013)

    Google Scholar 

  10. Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space based on strong congruence and connection. In: Proceedings of 5th International Conference on Principle of Knowledge Representation and Reasoning (KR 1996), pp. 220–229. Morgan Kaufmann (1996)

    Google Scholar 

  11. Borgo, S., Masolo, C.: Full mereogeometries. Rev. Symbolic Logic 3(4), 521–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68 (1940)

    Article  MathSciNet  Google Scholar 

  13. Clay, R.E.: The consistency of Leśniewski’s mereology relative to the real number system. J. Symbolic Logic 33, 251–257 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clay, R.E.: Relation of Leśniewski’s mereology to boolean algebra. J. Symbolic Logic 39(4), 638–648 (1974)

    Article  MathSciNet  Google Scholar 

  15. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG-88. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  17. Dapoigny, R., Barlatier, P.: Tarski\(\_\)Mereogeometry, University of Savoie (2015). http://www.polytech.univ-savoie.fr/index.php?id=listic-logiciels-lib-spatial&L=1

  18. Eschenbach, C., Heydrich, W.: Classical mereology and restricted domains. Int. J. Hum. Comput. Stud. 43(56), 723–740 (1995)

    Article  Google Scholar 

  19. Gerla, G.: Pointless geometries. In: Buekenhout, F. (ed.) Handbook of Incidence Geometry, pp. 1015–1031. Elsevier, North-Holland (1995)

    Chapter  Google Scholar 

  20. Gessler, N.: Introduction à l’oeuvre de S. Leśniewski. Part III: La méréologie. CdRS, Université de Neuchâtel (2005)

    Google Scholar 

  21. Gruszczy\(\grave{{\rm n}}\)ski, R., Pietruszczak, R.: Full development of tarski’s geometry of solids. Bull. Symbolic Logic 14(4), 481–540 (2008)

    Google Scholar 

  22. Hahmann, T., Grüninger, M.: Region-based theories of space: mereotopology and beyond. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pp. 1–62. IGI Publishing, USA (2012)

    Chapter  Google Scholar 

  23. Henkin, L.: A theory of propositional types. Fundam. Math. 52, 323–334 (1963). Errata 53, 119

    MathSciNet  MATH  Google Scholar 

  24. Hofmann, M.: Extensional concepts in intensional type theory. Ph.d. thesis, University of Edinburgh (1995)

    Google Scholar 

  25. Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.): Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press, Cambridge (1998)

    Google Scholar 

  26. Kuipers, B.J., Byun, Y.T.: A qualitative approach to robot exploration and map learning. In: Proceedings of the IEEE Workshop on Spatial Reasoning and Multi-Sensor Fusion, pp. 390–404. Morgan Kaufmann, San Mateo (1987)

    Google Scholar 

  27. Lejewski, C.: Consistency of Leśniewski’s mereology. J. Symbolic Logic 34(3), 321–328 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Leśniewski, S.: Podstawy ogólnej teoryi mnogosci. I, Moskow: Prace Polskiego Kola Naukowego w Moskwie, Sekcya matematyczno-przyrodnicza (1916). (English translation by Barnett, D.I.: Foundations of the general theory of sets. I. In: Surma, S.J., Srzednicki, J., Barnett, D.I., Rickey, F.V. (eds.) S. Leśniewski, Collected Works, vol. 1, pp. 129–173. Kluwer, Dordrecht (1992))

    Google Scholar 

  29. Leśniewski, S.: Einleitende Bemerkungen zur Fortsezung meiner Miteilung u.d.T. “Grundzüge eines neuen Systems der Grundlagen der Mathematik”. Collectanea Logica I, 1–60 (1938)

    Google Scholar 

  30. Oury, N.: Extensionality in the calculus of constructions. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 278–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Quine, W.: Unification of universes in set theory. J. Symb. Logic 21, 216 (1956)

    Article  Google Scholar 

  32. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  33. Rickey, V.F.: A survey of Leśniewski’s logic. Stud. Logica 36, 407–426 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seldin, J.P.: Extensional set equality in the calculus of constructions. J. Log. Comput. 11(3), 483–493 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simons, P.: Parts: A Study in Ontology. Clarendon Press, Oxford (1987)

    Google Scholar 

  36. Simons, P.M.: Nominalism in Poland. In: Srzednicki, J.T.J., Stachniak, Z. (eds.) Leśniewski’s Systems Protothetic. Nijhoff International Philosophy Series, vol. 54, pp. 1–22. Springer, Netherlands (1998)

    Chapter  Google Scholar 

  37. Sinisi, V.F.: Leśniewski’s foundations of mathematics. Topoi 2(1), 3–52 (1983)

    Article  MathSciNet  Google Scholar 

  38. Slupecki, J.: S. Leśniewski’s protothetics. Stud. Logica 1, 44–112 (1953)

    Article  MathSciNet  Google Scholar 

  39. Sobociński, B.: On the single axioms of protothetic I. Notre-Dame J. Formal Logic 1, 52–73 (1960)

    Article  Google Scholar 

  40. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized Reasoning 2(1), 41–62 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Tarski, A.: Sur le terme primitif de la Logistique. Fundam. Math. 4, 196–200 (1923)

    Google Scholar 

  42. Tarski, A.: Les fondements de la géométrie des corps (Foundations of the geometry of solids). In: Ksiega Pamiatkowa Pierwszego Polskiego Zjazdu Matematycznego, vol. 7, pp. 29–33 (1929)

    Google Scholar 

  43. Tarski, A.: Foundations of the geometry of solids. In: Tarski, A. (ed.) Logics, Semantics Metamathematics. Papers from 1923–1938 by Alfred Tarski. Clarendon Press, Oxford (1956)

    Google Scholar 

  44. Tarski, A.: On the foundation of Boolean algebra. In: Woodger, J.H. (ed.) Logic, Semantics, Metamathematics: Papers from 1923 to 1938, pp. 320–341. Clarendon Press, Oxford (1956)

    Google Scholar 

  45. Varzi, A.C.: Parts, wholes, and part-whole relations: the prospects of mereotopology. Data Knowl. Eng. 20(3), 259–286 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Dapoigny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dapoigny, R., Barlatier, P. (2015). A Coq-Based Axiomatization of Tarski’s Mereogeometry. In: Fabrikant, S., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds) Spatial Information Theory. COSIT 2015. Lecture Notes in Computer Science(), vol 9368. Springer, Cham. https://doi.org/10.1007/978-3-319-23374-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23374-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23373-4

  • Online ISBN: 978-3-319-23374-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics