Skip to main content

The Impact of Aging on Cancer Progression and Treatment

  • Chapter
Advances in Geroscience

Abstract

Neoplastic diseases will soon be the leading cause of death in North America and Western Europe. The incidence of cancer increases exponentially with age, and there is significant evidence to suggest intimate connections between the molecular pathogenesis of cancer and aging. Cancer occurs as a result of accumulating genetic and epigenetic alterations in self-renewing cells that lead to unrestrained cell proliferation, resistance to apoptosis, immune evasion and tumor spread. Several classical features of aging contribute to the age-induced development of cancer including accumulated macromolecular damage, waning cellular immunity, and altered epigenetic state in long-term self-renewing cells including somatic stem cells. In this chapter, we will discuss how these general mechanisms of aging contribute to specific malignancies, and identify research needs in these areas. We believe an inevitable conclusion from this analysis is that cancer and aging are very closely linked, and therefore a “cure” for cancer is as unlikely as a “cure” for aging. Work described in this chapter, however, will show how a molecular understanding of the dynamic inter-play between cancer and aging suggest it will be possible to decrease the incidence of new cancers while slowing the rate of physiological aging and extending the human healthspan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81. doi:10.1126/science.1260825

    Article  CAS  PubMed  Google Scholar 

  2. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A 4:4

    Google Scholar 

  3. Davis AC, Wims M, Spotts GD, Hann SR, Bradley A (1993) A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7(4):671–682

    Article  CAS  PubMed  Google Scholar 

  4. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305. doi:10.1038/nature01587

    Article  CAS  PubMed  Google Scholar 

  6. Pagliarini R, Shao W, Sellers WR. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 2015;16(3):280–296. doi:10.15252/embr.201439949.

    Google Scholar 

  7. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13(10):693–704. doi:10.1038/nrg3246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lund K, Adams PD, Copland M (2014) EZH2 in normal and malignant hematopoiesis. Leukemia 28(1):44–49. doi:10.1038/leu.2013.288

    Article  CAS  PubMed  Google Scholar 

  9. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487. doi:10.1056/NEJMoa1409405

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498. doi:10.1056/NEJMoa1408617

    Article  PubMed Central  PubMed  Google Scholar 

  11. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478. doi:10.1038/nm.3733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386(6627):761–763. doi:10.1038/386761a0

    Article  CAS  PubMed  Google Scholar 

  13. van Heemst D, den Reijer PM, Westendorp RG (2007) Ageing or cancer: a review on the role of caretakers and gatekeepers. Eur J Cancer 43(15):2144–2152. doi:10.1016/j.ejca.2007.07.011

    Article  PubMed  Google Scholar 

  14. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512. doi:10.1016/j.cell.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  15. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406. doi:10.1146/annurev.cellbio.042308.113248

    Article  CAS  PubMed  Google Scholar 

  16. Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105(4):370–388. doi:10.1111/cas.12366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dietlein F, Thelen L, Reinhardt HC (2014) Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet 30(8):326–339. doi:10.1016/j.tig.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  18. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. doi:10.1038/nature03443

    Article  CAS  PubMed  Google Scholar 

  19. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. doi:10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  20. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191. doi:10.1101/gad.225680.113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655. doi:10.1016/j.freeradbiomed.2009.12.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014. doi:10.1016/j.bbagen.2009.06.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2(10):731–737. doi:10.1038/35096061

    Article  CAS  PubMed  Google Scholar 

  24. Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127(2):265–275. doi:10.1016/j.cell.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  25. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040. doi:10.1038/sj.onc.1207116

    Article  CAS  PubMed  Google Scholar 

  26. Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science 336(6087):1440–1444. doi:10.1126/science.1218351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Burd CE, Sharpless NE (2010) What’s so special about RB? Cancer Cell 17(4):313–314. doi:10.1016/j.ccr.2010.03.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al (2010) Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17(4):376–387. doi:10.1016/j.ccr.2010.01.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18(38):5311–5317. doi:10.1038/sj.onc.1202998

    Article  CAS  PubMed  Google Scholar 

  30. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152(1–2):340–351. doi:10.1016/j.cell.2012.12.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665. doi:10.1038/nature05541

    Article  CAS  PubMed  Google Scholar 

  32. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127(7):1323–1334. doi:10.1016/j.cell.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  33. Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32(43):5129–5143. doi:10.1038/onc.2012.640

    Article  CAS  PubMed  Google Scholar 

  34. Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18(3):306–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867):45–53

    Article  CAS  PubMed  Google Scholar 

  36. Dumble M, Moore L, Chambers SM, Geiger H, Van Zant G, Goodell MA et al (2007) The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109(4):1736–1742. doi:10.1182/blood-2006-03-010413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448(7151):375–379

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P, Flores JM et al (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21(22):6225–6235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Matheu A, Pantoja C, Efeyan A, Criado LM, Martin-Caballero J, Flores JM et al (2004) Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev 18(22):2736–2746. doi:10.1101/gad.310304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307. doi:10.1172/JCI22475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15(2):203–211. doi:10.1038/sj.onc.1201178

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG et al (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8(4):439–448. doi:10.1111/j.1474-9726.2009.00489.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452. doi:10.1038/nature05091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426

    CAS  PubMed  Google Scholar 

  45. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S et al (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457. doi:10.1038/nature05092

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J et al (2011) Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood 117(12):3257–3267. doi:10.1182/blood-2010-09-304402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Signer RA, Montecino-Rodriguez E, Witte ON, Dorshkind K (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 22(22):3115–3120. doi:10.1101/gad.1715808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen H, Gu X, Su IH, Bottino R, Contreras JL, Tarakhovsky A et al (2009) Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev 23(8):975–985. doi:10.1101/gad.1742509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kuo CL, Murphy AJ, Sayers S, Li R, Yvan-Charvet L, Davis JZ et al (2011) Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb Vasc Biol 31(11):2483–2492. doi:10.1161/ATVBAHA.111.234492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Jeck WR, Siebold AP, Sharpless NE (2012) Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11(5):727–731. doi:10.1111/j.1474-9726.2012.00871.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296. doi:10.1038/nrm3330

    CAS  PubMed  Google Scholar 

  52. Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan KT et al (2012) LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Cancer Cell 21(6):751–764. doi:10.1016/j.ccr.2012.03.048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807–810. doi:10.1038/nature06030

    Article  CAS  PubMed  Google Scholar 

  54. Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. [Review]. Nat Rev Cancer 15(7):397–408. doi:10.1038/nrc3960

    Article  CAS  PubMed  Google Scholar 

  55. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  CAS  PubMed  Google Scholar 

  58. Liu G, Terzian T, Xiong S, Van Pelt CS, Audiffred A, Box NF et al (2007) The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J Pathol 213(4):360–368. doi:10.1002/path.2238

    Article  CAS  PubMed  Google Scholar 

  59. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci U S A 103(52):19842–19847. doi:10.1073/pnas.0606343104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Gruis NA, van der Velden PA, Sandkuijl LA, Prins DE, Weaver-Feldhaus J, Kamb A et al (1995) Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 10(3):351–353. doi:10.1038/ng0795-351

    Article  CAS  PubMed  Google Scholar 

  61. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236. doi:10.1038/nature10600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Liu JC, Lerou PH, Lahav G (2014) Stem cells: balancing resistance and sensitivity to DNA damage. Trends Cell Biol 24(5):268–274. doi:10.1016/j.tcb.2014.03.002

    Article  PubMed Central  PubMed  Google Scholar 

  63. Heyer BS, MacAuley A, Behrendtsen O, Werb Z (2000) Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes Dev 14(16):2072–2084

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22(20):2755–2766. doi:10.1101/gad.1712408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A et al (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148(5):1001–1014. doi:10.1016/j.cell.2012.01.040

    Article  CAS  PubMed  Google Scholar 

  66. Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T et al (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137(6):1088–1099. doi:10.1016/j.cell.2009.03.037

    Article  CAS  PubMed  Google Scholar 

  67. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. doi:10.1016/j.cell.2013.05.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R et al (2011) PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 478(7369):349–355. doi:10.1038/nature10502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105. doi:10.1038/ng1937

    Article  CAS  PubMed  Google Scholar 

  70. Orsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG (2007) Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med 204(6):1295–1301

    Article  PubMed Central  PubMed  Google Scholar 

  71. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287(5459):1804–1808

    Article  CAS  PubMed  Google Scholar 

  72. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  CAS  PubMed  Google Scholar 

  73. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C et al (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747

    Article  CAS  PubMed  Google Scholar 

  74. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157

    Article  CAS  PubMed  Google Scholar 

  75. Knudson M, Kulkarni S, Ballas ZK, Bessler M, Goldman F (2005) Association of immune abnormalities with telomere shortening in autosomal-dominant dyskeratosis congenita. Blood 105(2):682–688. doi:10.1182/blood-2004-04-1673

    Article  CAS  PubMed  Google Scholar 

  76. Jyonouchi S, Forbes L, Ruchelli E, Sullivan KE (2011) Dyskeratosis congenita: a combined immunodeficiency with broad clinical spectrum--a single-center pediatric experience. [Review]. Pediatr Allergy Immunol 22(3):313–319. doi:10.1111/j.1399-3038.2010.01136.x

    Article  CAS  PubMed  Google Scholar 

  77. Rodier F, Campisi J (2011) Four faces of cellular senescence. [Review]. J Cell Biol 192(4):547–556. doi:10.1083/jcb.201009094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733. doi:10.1016/j.devcel.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  79. Neves J, Demaria M, Campisi J, Jasper H (2015) Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging. Dev Cell 32(1):9–18. doi:10.1016/j.devcel.2014.11.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    Article  CAS  PubMed  Google Scholar 

  81. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118(Pt 3):485–496

    Article  CAS  PubMed  Google Scholar 

  83. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67(7):3117–3126. doi:10.1158/0008-5472.CAN-06-3452

    Article  CAS  PubMed  Google Scholar 

  84. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105. doi:10.1016/j.mad.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL et al (2009) INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One 4(4):e5027. doi:10.1371/journal.pone.0005027

    Article  PubMed Central  PubMed  Google Scholar 

  86. Gonzalez-Navarro H, Abu Nabah YN, Vinue A, Andres-Manzano MJ, Collado M, Serrano M et al (2010) p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol 55(20):2258–2268

    Article  CAS  PubMed  Google Scholar 

  87. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. doi:10.1038/nature12477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL (2011) The replication rate of human hematopoietic stem cells in vivo. Blood 117(17):4460–4466. doi:10.1182/blood-2010-08-303537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4(149):149ra118. doi:10.1126/scitranslmed.3004315

    Article  PubMed Central  PubMed  Google Scholar 

  90. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181. doi:10.1038/nrm2848

    PubMed Central  PubMed  Google Scholar 

  91. Samassekou O, Gadji M, Drouin R, Yan J (2010) Sizing the ends: normal length of human telomeres. Ann Anat 192(5):284–291. doi:10.1016/j.aanat.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  92. Prescott J, Wentzensen IM, Savage SA, De Vivo I (2012) Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res 730(1–2):75–84. doi:10.1016/j.mrfmmm.2011.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Hou L, Zhang X, Gawron AJ, Liu J (2012) Surrogate tissue telomere length and cancer risk: shorter or longer? Cancer Lett 319(2):130–135. doi:10.1016/j.canlet.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  94. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959. doi:10.1126/science.1229259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  CAS  PubMed  Google Scholar 

  96. Martin GM (1987) Interactions of aging and environmental agents: the gerontological perspective. Prog Clin Biol Res 228:25–80

    CAS  PubMed  Google Scholar 

  97. Sorrentino JA, Krishnamurthy J, Tilley S, Alb JG Jr, Burd CE, Sharpless NE (2014) p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J Clin Invest 124(1):169–173. doi:10.1172/JCI70960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR et al (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA 309(22):2371–2381. doi:10.1001/jama.2013.6296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Holland AM, van den Brink MR (2009) Rejuvenation of the aging T cell compartment. Curr Opin Immunol 21(4):454–459. doi:10.1016/j.coi.2009.06.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NES and SH are supported by grants from the NIA and NCI.

Editor: Kevin Howcroft (National Cancer Institute, NCI), NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman E. Sharpless M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

He, S., Sharpless, N.E. (2016). The Impact of Aging on Cancer Progression and Treatment. In: Sierra, F., Kohanski, R. (eds) Advances in Geroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-23246-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23246-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23245-4

  • Online ISBN: 978-3-319-23246-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics