Skip to main content

Osteoporosis and Mechanisms of Skeletal Aging

  • Chapter
Advances in Geroscience

Abstract

Osteoporosis is a generalized skeletal disorder in which decreases in bone mass and bone quality lead to increased bone fragility and contribute to risk of fracture. It can affect people at any age, but its prevalence and clinical consequences increase exponentially with age. Fractures are particularly detrimental in the elderly population because they may lead to decreased quality of life, loss of independent living, a decline in health status, and death. Skeletal aging has been a subject of extensive research, with gradual uncovering of mechanisms mediating the loss of bone strength. Among these are bone matrix alterations, genetic and epigenetic mechanisms, age-related changes in bone metabolism and stem cells, declines in osteotrophic hormones, and changes in inflammatory and stress processes. Clinical and epidemiologic studies have also contributed to our understanding of fracture pathophysiology by identifying the risk factors for fractures and their interactions with aging. In addition, management of osteoporosis in the elderly has advanced through the development of an array of therapeutic agents with documented anti-fracture efficacy. Finally, it has become increasingly clear that the most effective approach to fracture prevention includes not just use of pharmacologic agents but addressing the whole patient through appropriate diet, activity, and overall health optimization. A growing understanding of the biological processes of aging and cross-talk between different tissues and organ system offers new approaches to prevent and treat osteoporosis. It is likely that the future of geriatric care will be transformed through a better integration of clinical observations and basic science discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    PubMed  Google Scholar 

  2. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367(9527):2010–2018

    CAS  PubMed  Google Scholar 

  3. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C (2009) Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int 20(10):1633–1650

    CAS  PubMed  Google Scholar 

  5. Haentjens P, Magaziner J, Colon-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390

    PubMed Central  PubMed  Google Scholar 

  6. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767

    PubMed  Google Scholar 

  7. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR (1999) Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 159(11):1215–1220

    CAS  PubMed  Google Scholar 

  8. Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA et al (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int 14(7):589–594

    CAS  PubMed  Google Scholar 

  9. Kado DM, Prenovost K, Crandall C (2007) Narrative review: hyperkyphosis in older persons. Ann Intern Med 147(5):330–338

    PubMed  Google Scholar 

  10. Katzman WB, Huang MH, Lane NE, Ensrud KE, Kado DM (2013) Kyphosis and decline in physical function over 15 years in older community-dwelling women: the Study of Osteoporotic Fractures. J Gerontol A Biol Sci Med Sci 68(8):976–983

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Singer A, Exuzides A, Spangler L, O’Malley C, Colby C, Johnston K et al (2015) Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc 90(1):53–62

    PubMed  Google Scholar 

  12. Cauley JA, Chalhoub D, Kassem AM, Fuleihan GH (2014) Geographic and ethnic disparities in osteoporotic fractures. Nat Rev Endocrinol 10(6):338–351

    PubMed  Google Scholar 

  13. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11(7):1010–1018

    PubMed  Google Scholar 

  14. Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP et al (2009) Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk. J Bone Miner Res 24(3):495–502

    PubMed  Google Scholar 

  15. Karlsson MK, Ribom EL, Nilsson JA, Karlsson C, Coster M, Vonschewelov T et al (2014) International and ethnic variability of falls in older men. Scand J Public Health 42(2):194–200

    PubMed  Google Scholar 

  16. Morrison A, Fan T, Sen SS, Weisenfluh L (2013) Epidemiology of falls and osteoporotic fractures: a systematic review. Clinicoecon Outcomes Res 5:9–18

    PubMed Central  PubMed  Google Scholar 

  17. Ballane G, Cauley JA, Luckey MM, Fuleihan GH (2014) Secular trends in hip fractures worldwide: opposing trends East versus West. J Bone Miner Res 29(8):1745–1755

    PubMed  Google Scholar 

  18. Khosla S (2013) Pathogenesis of age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68(10):1226–1235

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Seeman E (1999) The structural basis of bone fragility in men. Bone 25(1):143–147

    CAS  PubMed  Google Scholar 

  20. Clarke BL, Khosla S (2010) Physiology of bone loss. Radiol Clin North Am 48(3):483–495

    PubMed Central  PubMed  Google Scholar 

  21. Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B (2010) Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing 39(2):203–209

    PubMed  Google Scholar 

  22. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R (2012) Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr 55(2):e48–e52

    PubMed  Google Scholar 

  23. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R (2012) Men recover ability to function less than women do: an observational study of 1094 subjects after hip fracture. Am J Phys Med Rehabil 91(4):309–315

    PubMed  Google Scholar 

  24. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97(6):1802–1822

    CAS  PubMed  Google Scholar 

  25. Geusens PP, van den Bergh JP (2012) Bone: new guidelines for multistep fracture prevention in men. Nat Rev Rheumatol 8(10):568–570

    PubMed  Google Scholar 

  26. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141

    CAS  PubMed  Google Scholar 

  27. Rizzoli R, Branco J, Brandi ML, Boonen S, Bruyere O, Cacoub P et al (2014) Management of osteoporosis of the oldest old. Osteoporos Int 25(11):2507–2529

    CAS  PubMed  Google Scholar 

  28. Berry SD, Ngo L, Samelson EJ, Kiel DP (2010) Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc 58(4):783–787

    PubMed Central  PubMed  Google Scholar 

  29. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Compston J, Bowring C, Cooper A, Cooper C, Davies C, Francis R et al (2013) Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: national Osteoporosis Guideline Group (NOGG) update 2013. Maturitas 75(4):392–396

    CAS  PubMed  Google Scholar 

  31. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323

    CAS  PubMed  Google Scholar 

  32. Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3(3):120–126

    CAS  PubMed  Google Scholar 

  33. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18(6):761–770

    CAS  PubMed  Google Scholar 

  34. Donaldson MG, Palermo L, Schousboe JT, Ensrud KE, Hochberg MC, Cummings SR (2009) FRAX and risk of vertebral fractures: the fracture intervention trial. J Bone Miner Res 24(11):1793–1799

    PubMed  Google Scholar 

  35. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK et al (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20(7):1216–1222

    PubMed  Google Scholar 

  36. Lewiecki EM, Laster AJ (2006) Clinical review: clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 91(11):4215–4222

    CAS  PubMed  Google Scholar 

  37. Ensrud KE, Schousboe JT (2011) Clinical practice. Vertebral fractures. N Engl J Med 364(17):1634–1642

    CAS  PubMed  Google Scholar 

  38. Rosen HN, Vokes TJ, Malabanan AO, Deal CL, Alele JD, Olenginski TP et al (2013) The Official Positions of the International Society for Clinical Densitometry: vertebral fracture assessment. J Clin Densitom 16(4):482–488

    PubMed  Google Scholar 

  39. Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319(26):1701–1707

    CAS  PubMed  Google Scholar 

  40. Peel NM, Kassulke DJ, McClure RJ (2002) Population based study of hospitalised fall related injuries in older people. Inj Prev 8(4):280–283

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Rodriguez-Manas L (2014) Fried LP. Frailty in the clinical scenario, Lancet

    Google Scholar 

  42. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156

    CAS  PubMed  Google Scholar 

  43. Ensrud KE, Ewing SK, Taylor BC, Fink HA, Cawthon PM, Stone KL et al (2008) Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Arch Intern Med 168(4):382–389

    PubMed  Google Scholar 

  44. Ensrud KE, Ewing SK, Taylor BC, Fink HA, Stone KL, Cauley JA et al (2007) Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci 62(7):744–751

    PubMed  Google Scholar 

  45. Tom SE, Adachi JD, Anderson FA Jr, Boonen S, Chapurlat RD, Compston JE et al (2013) Frailty and fracture, disability, and falls: a multiple country study from the global longitudinal study of osteoporosis in women. J Am Geriatr Soc 61(3):327–334

    PubMed Central  PubMed  Google Scholar 

  46. Kaiser MJ, Bauer JM, Ramsch C, Uter W, Guigoz Y, Cederholm T et al (2010) Frequency of malnutrition in older adults: a multinational perspective using the mini nutritional assessment. J Am Geriatr Soc 58(9):1734–1738

    PubMed  Google Scholar 

  47. Genaro Pde S, Martini LA (2010) Effect of protein intake on bone and muscle mass in the elderly. Nutr Rev 68(10):616–623

    PubMed  Google Scholar 

  48. Waters DL, Baumgartner RN, Garry PJ, Vellas B (2010) Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging 5:259–270

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Livingstone C (2013) Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin Sci (Lond) 125(6):265–280

    CAS  Google Scholar 

  50. Wijnhoven HA, Schilp J, van Bokhorst-de van der Schueren MA, de Vet HC, Kruizenga HM, Deeg DJ et al (2012) Development and validation of criteria for determining undernutrition in community-dwelling older men and women: the Short Nutritional Assessment Questionnaire 65+. Clin Nutr 31(3):351–358

    PubMed  Google Scholar 

  51. Chevalley T, Hoffmeyer P, Bonjour JP, Rizzoli R (2010) Early serum IGF-I response to oral protein supplements in elderly women with a recent hip fracture. Clin Nutr 29(1):78–83

    CAS  PubMed  Google Scholar 

  52. Gaffney-Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE (2009) Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc 57(6):1073–1079

    PubMed  Google Scholar 

  53. Mithal A, Bonjour JP, Boonen S, Burckhardt P, Degens H, El Hajj FG et al (2013) Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int 24(5):1555–1566

    CAS  PubMed  Google Scholar 

  54. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124(11):1043–1050

    PubMed  Google Scholar 

  55. Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27(1):1–10

    PubMed  Google Scholar 

  56. Premaor M, Parker RA, Cummings S, Ensrud K, Cauley JA, Lui LY et al (2013) Predictive value of FRAX for fracture in obese older women. J Bone Miner Res 28(1):188–195

    PubMed Central  PubMed  Google Scholar 

  57. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502

    PubMed Central  PubMed  Google Scholar 

  58. Leslie WD, Orwoll ES, Nielson CM, Morin SN, Majumdar SR, Johansson H et al (2014) Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture. J Bone Miner Res 29(11):2511–2519

    PubMed  Google Scholar 

  59. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR (2011) Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 342:d2040

    PubMed Central  PubMed  Google Scholar 

  60. Prentice RL, Pettinger MB, Jackson RD, Wactawski-Wende J, Lacroix AZ, Anderson GL et al (2013) Health risks and benefits from calcium and vitamin D supplementation: women’s Health Initiative clinical trial and cohort study. Osteoporos Int 24(2):567–580

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Steingrimsdottir L, Gunnarsson O, Indridason OS, Franzson L, Sigurdsson G (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. JAMA 294(18):2336–2341

    CAS  PubMed  Google Scholar 

  62. Boucher BJ (2012) The problems of vitamin d insufficiency in older people. Aging Dis 3(4):313–329

    PubMed Central  PubMed  Google Scholar 

  63. Abellan van Kan G, Rolland Y, Houles M, Gillette-Guyonnet S, Soto M, Vellas B (2010) The assessment of frailty in older adults. Clin Geriatr Med 26(2):275–286

    PubMed  Google Scholar 

  64. Kado DM, Miller-Martinez D, Lui LY, Cawthon P, Katzman WB, Hillier TA et al (2014) Hyperkyphosis, kyphosis progression, and risk of non-spine fractures in older community dwelling women: the study of osteoporotic fractures (SOF). J Bone Miner Res 29(10):2210–2216

    PubMed Central  PubMed  Google Scholar 

  65. Katzman WB, Harrison SL, Fink HA, Marshall LM, Orwoll E, Barrett-Connor E et al (2014) Physical function in older Men with hyperkyphosis. J Gerontol A Biol Sci Med Sci 70(5):635–40

    PubMed  Google Scholar 

  66. Bansal S, Katzman WB, Giangregorio LM (2014) Exercise for improving age-related hyperkyphotic posture: a systematic review. Arch Phys Med Rehabil 95(1):129–140

    PubMed Central  PubMed  Google Scholar 

  67. Michael YL, Whitlock EP, Lin JS, Fu R, O’Connor EA, Gold R (2010) Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 153(12):815–825

    PubMed  Google Scholar 

  68. Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C et al (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 7, CD000333

    PubMed  Google Scholar 

  69. Robertson MC, Campbell AJ, Gardner MM, Devlin N (2002) Preventing injuries in older people by preventing falls: a meta-analysis of individual-level data. J Am Geriatr Soc 50(5):905–911

    PubMed  Google Scholar 

  70. Sherrington C, Henschke N (2013) Why does exercise reduce falls in older people? Unrecognised contributions to motor control and cognition? Br J Sports Med 47(12):730–731

    PubMed  Google Scholar 

  71. Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K et al (2014) Too Fit To Fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int 25(3):821–835

    CAS  PubMed  Google Scholar 

  72. Li F, Harmer P, Fisher KJ, McAuley E, Chaumeton N, Eckstrom E et al (2005) Tai Chi and fall reductions in older adults: a randomized controlled trial. J Gerontol A Biol Sci Med Sci 60(2):187–194

    PubMed  Google Scholar 

  73. Wayne PM, Kiel DP, Buring JE, Connors EM, Bonato P, Yeh GY et al (2012) Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial. BMC Complement Altern Med 12:7

    PubMed Central  PubMed  Google Scholar 

  74. Ensrud KE, Black DM, Palermo L, Bauer DC, Barrett-Connor E, Quandt SA et al (1997) Treatment with alendronate prevents fractures in women at highest risk: results from the Fracture Intervention Trial. Arch Intern Med 157(22):2617–2624

    CAS  PubMed  Google Scholar 

  75. Boonen S, Black DM, Colon-Emeric CS, Eastell R, Magaziner JS, Eriksen EF et al (2010) Efficacy and safety of a once-yearly intravenous zoledronic acid 5 mg for fracture prevention in elderly postmenopausal women with osteoporosis aged 75 and older. J Am Geriatr Soc 58(2):292–299

    PubMed Central  PubMed  Google Scholar 

  76. Boonen S, Marin F, Mellstrom D, Xie L, Desaiah D, Krege JH et al (2006) Safety and efficacy of teriparatide in elderly women with established osteoporosis: bone anabolic therapy from a geriatric perspective. J Am Geriatr Soc 54(5):782–789

    PubMed  Google Scholar 

  77. Boonen S, McClung MR, Eastell R, El-Hajj Fuleihan G, Barton IP, Delmas P (2004) Safety and efficacy of risedronate in reducing fracture risk in osteoporotic women aged 80 and older: implications for the use of antiresorptive agents in the old and oldest old. J Am Geriatr Soc 52(11):1832–1839

    PubMed  Google Scholar 

  78. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–340

    CAS  PubMed  Google Scholar 

  79. Seeman E, Vellas B, Benhamou C, Aquino JP, Semler J, Kaufman JM et al (2006) Strontium ranelate reduces the risk of vertebral and nonvertebral fractures in women eighty years of age and older. J Bone Miner Res 21(7):1113–1120

    CAS  PubMed  Google Scholar 

  80. Hochberg MC, Thompson DE, Black DM, Quandt SA, Cauley J, Geusens P et al (2005) Effect of alendronate on the age-specific incidence of symptomatic osteoporotic fractures. J Bone Miner Res 20(6):971–976

    CAS  PubMed  Google Scholar 

  81. Boonen S, Adachi JD, Man Z, Cummings SR, Lippuner K, Torring O et al (2011) Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 96(6):1727–1736

    CAS  PubMed  Google Scholar 

  82. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822

    CAS  PubMed  Google Scholar 

  83. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC et al (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85(11):4118–4124

    CAS  PubMed  Google Scholar 

  84. Boonen S, Orwoll E (2013) Fracture risk and zoledronic acid in men with osteoporosis. N Engl J Med 368(9):873

    CAS  PubMed  Google Scholar 

  85. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    CAS  PubMed  Google Scholar 

  86. Maricic M, Adachi JD, Sarkar S, Wu W, Wong M, Harper KD (2002) Early effects of raloxifene on clinical vertebral fractures at 12 months in postmenopausal women with osteoporosis. Arch Intern Med 162(10):1140–1143

    CAS  PubMed  Google Scholar 

  87. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468

    CAS  PubMed  Google Scholar 

  88. Roux C, Seeman E, Eastell R, Adachi J, Jackson RD, Felsenberg D et al (2004) Efficacy of risedronate on clinical vertebral fractures within six months. Curr Med Res Opin 20(4):433–439

    CAS  PubMed  Google Scholar 

  89. Hlaing TT, Compston JE (2014) Biochemical markers of bone turnover – uses and limitations. Ann Clin Biochem 51(Pt 2):189–202

    PubMed  Google Scholar 

  90. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420

    CAS  PubMed  Google Scholar 

  91. Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8(7):379–389

    CAS  PubMed  Google Scholar 

  92. Watts NB, Bilezikian JP (2014) Advances in target-specific therapy for osteoporosis. J Clin Endocrinol Metab 99(4):1149–1151

    CAS  PubMed  Google Scholar 

  93. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep 5:62–66

    PubMed  Google Scholar 

  94. Jepsen KJ (2003) The aging cortex: to crack or not to crack. Osteoporos Int 14(Suppl 5):S57–S62

    PubMed  Google Scholar 

  95. Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260

    CAS  PubMed  Google Scholar 

  96. Zimmermann EA, Schaible E, Bale H et al (2011) Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A 108:14416–14421

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Paschalis EP, Tatakis DN, Robins S et al (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Wang X, Bank RA, TeKoppele JM, Agrawal CM (2001) The role of collagen in determining bone mechanical properties. J Orthop Res 19:1021–1026

    CAS  PubMed  Google Scholar 

  99. Vashishth D, Gibson GJ, Khoury JI et al (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201

    CAS  PubMed  Google Scholar 

  100. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H (2003) Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes 52:2441–2444

    CAS  PubMed  Google Scholar 

  101. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    CAS  PubMed  Google Scholar 

  102. Hein G, Wiegand R, Lehmann G, Stein G, Franke S (2003) Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford) 42:1242–1246

    CAS  Google Scholar 

  103. Bonar LC, Roufousse AS, Sabine WK et al (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    CAS  PubMed  Google Scholar 

  104. Paschalis EP, DiCarlo E, Betts F et al (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    CAS  PubMed  Google Scholar 

  105. Simmons ED Jr, Pritzker KPH, Grynpas MD (1991) Age-related changes in the human femoral cortex. J Orthop Res 9:155–167

    PubMed  Google Scholar 

  106. Burr DB, Turner CH (1999) Biomechanical measurements in age-related bone loss. In: Rosen CJ, Glowacki J, Bilezikian JP (eds) The aging skeleton. Academic, San Diego, pp 301–311

    Google Scholar 

  107. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    CAS  PubMed  Google Scholar 

  108. Gabet Y, Bab I (2011) Microarchitectural changes in the aging skeleton. Curr Osteoporos Rep 9:177–183

    PubMed  Google Scholar 

  109. Chen H, Zhou X, Shoumura S, Emura S, Bunai Y (2010) Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int 21:627–636

    CAS  PubMed  Google Scholar 

  110. Martin RB (1991) Determinants of the mechanical properties of bones. J Biomech ;24 Suppl 1:79–88. Review. Erratum in: J Biomech. 1992;25:1251

    Google Scholar 

  111. Boyde A (2002) Morphologic detail of aging bone in human vertebrae. Endocrine 17:5–14

    CAS  PubMed  Google Scholar 

  112. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    CAS  PubMed  Google Scholar 

  113. Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ (2013) Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS One 8, e83662

    PubMed Central  PubMed  Google Scholar 

  114. Frost HM (1991) Some ABC’s of skeletal pathophysiology. 5. Microdamage physiology. Calcif Tissue Int 49:229–231

    CAS  PubMed  Google Scholar 

  115. Noble B (2003) Bone microdamage and cell apoptosis. Eur Cell Mater 6:46–55

    CAS  PubMed  Google Scholar 

  116. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200

    CAS  PubMed  Google Scholar 

  117. Kennedy OD, Herman BC, Laudier DM et al (2012) Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50:1115–1122

    PubMed Central  PubMed  Google Scholar 

  118. Seref-Ferlengez Z, Basta-Pljakic J, Kennedy OD, Philemon CJ, Schaffler MB (2014) Structural and mechanical repair of diffuse damage in cortical bone in vivo. J Bone Miner Res 29:2537–2544

    PubMed  Google Scholar 

  119. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    CAS  PubMed  Google Scholar 

  120. Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270

    CAS  PubMed  Google Scholar 

  121. Chung PL, Zhou S, Eslami B, Shen L, LeBoff MS, Glowacki J (2014) Effect of age on regulation of human osteoclast differentiation. J Cell Biochem 115:1412–1419

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Cheleuitte D, Mizuno S, Glowacki J (1998) In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 83:2043–2051

    CAS  PubMed  Google Scholar 

  123. Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J (2011) Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 88:272–280

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82:583–590

    CAS  PubMed  Google Scholar 

  125. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human marrow stromal cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    PubMed Central  CAS  PubMed  Google Scholar 

  126. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122

    PubMed  Google Scholar 

  127. Shen L, Zhou S, Glowacki J (2009) Effects of age and gender on WNT gene expression in human bone marrow stromal cells. J Cell Biochem 106:337–343

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Pandey AC, Semon JA, Kaushal D et al (2011) MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res Ther 2:49

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Candini O, Spano C, Murgia A, et al. Mesenchymal progenitors aging highlights a miR-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis. Stem Cells. 2014 Nov 26. doi: 10.1002/stem.1897. [Epub ahead of print]

    Google Scholar 

  130. Zhou S, Bueno EM, Kim SW et al (2011) Effects of age on parathyroid hormone signaling in human marrow stromal cells. Aging Cell 10:780–788

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Geng S, Zhou S, Glowacki J (2011) Age-related decline in osteoblastogenesis and 1α-hydroxylase/CYP27B1 in human mesenchymal stem cells: stimulation by parathyroid hormone. Aging Cell 10:962–971

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Zhou S, Geng S, Glowacki J (2013) Histone deacetylation mediates the rejuvenation of osteoblastogenesis by the combination of 25(OH)D3 and parathyroid hormone in MSCs from elders. J Steroid Biochem Mol Biol 136:156–159

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Geng S, Zhou S, Bi Z, Glowacki J (2013) Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism 62:768–777

    PubMed Central  CAS  PubMed  Google Scholar 

  134. D’Avis PY, Frazier CR, Shapiro JR, Fedarko NS (1997) Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J 324:753–760

    PubMed Central  PubMed  Google Scholar 

  135. Haden ST, Glowacki J, Hurwitz S, Rosen C, LeBoff MS (2000) Effects of age on serum dehydroepiandrosterone sulfate, IGF-I, and IL-6 levels in women. Calcif Tissue Int 66:414–418

    CAS  PubMed  Google Scholar 

  136. Gordon CM, LeBoff MS, Glowacki J (2001) Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine 16:178–186

    CAS  PubMed  Google Scholar 

  137. Kennedy BK, Berger SL, Brunet A et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713

    CAS  PubMed  Google Scholar 

  138. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed Central  PubMed  Google Scholar 

  139. Marie PJ (2014) Bone cell senescance:Mechanisms and perspectives. J Bone Miner Res 29:1311–1321

    CAS  PubMed  Google Scholar 

  140. Shiraki M, Aoki C, Goto M (1998) Bone and calcium metabolism in Werner’s syndrome. Endocr J 45:505–512

    CAS  PubMed  Google Scholar 

  141. Simonsen JL, Rosada C, Serakinci N et al (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20:592–596

    CAS  PubMed  Google Scholar 

  142. Bork S, Pfister S, Witt H et al (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9:54–63

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Yu KR, Kang KS (2013) Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59:557–563

    CAS  PubMed  Google Scholar 

  144. Zhu Y, Song X, Wang J et al (2015) Placental mesenchymal stem cells of fetal origin deposit epigenetic alterations during long-term culture under serum-free condition. Expert Opin Biol Ther 15:163–180

    CAS  PubMed  Google Scholar 

  145. Garrett IR, Chen D, Gutierrez G et al (2003) Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 111:1771–1782

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Nuschke A, Rodrigues M, Stolz DB et al (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther 5:140e

    Google Scholar 

  147. Alessio N, Del Gaudio S, Capasso S et al (2015) Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 6(10):8155–8166

    PubMed Central  PubMed  Google Scholar 

  148. Hocking LJ, Whitehouse C, Helfrich MH (2012) Autophagy: a new player in skeletal maintenance? J Bone Miner Res 27:1439–1447

    CAS  PubMed  Google Scholar 

  149. Mobasheri A, Shakibaei M (2013) Osteogenic effects of resveratrol in vitro: potential for the prevention and treatment of osteoporosis. Ann N Y Acad Sci 1290:59–66

    CAS  PubMed  Google Scholar 

  150. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, O’Reilly T, Lane H, Susa M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35:1144–1156

    CAS  PubMed  Google Scholar 

  151. Lecka-Czernik B, Stechschulte LA (2014) Bone and fat: a relationship of different shades. Arch Biochem Biophys 561:124–129

    CAS  PubMed  Google Scholar 

  152. Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology (Bethesda) 30:8–16

    CAS  Google Scholar 

  153. Almeida M, O’Brien CA (2013) Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci 68:1197–1208

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Gokhale A, Rwigema JC, Epperly MW et al (2010) Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model. In Vivo 24:377–385

    PubMed Central  PubMed  Google Scholar 

  156. Glowacki J, Mizuno S, Kung J et al (2014) Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing. In Vivo 28:189–196

    PubMed  Google Scholar 

  157. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9

    PubMed  Google Scholar 

  158. Sanguineti R, Puddu A, Mach F, Montecucco F, Viviani GL (2014) Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm 2014:975872

    PubMed Central  PubMed  Google Scholar 

  159. Feng X, Feng G, Xing J et al (2014) Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell Tissue Res 356:369–380

    CAS  PubMed  Google Scholar 

  160. Abdelmagid SM, Barbe MF, Safadi FF. Role of inflammation in the aging bone. Life Sci. 2014 Dec 12. pii: S0024-3205(14)00932-1 [Epub ahead of print].

    Google Scholar 

  161. Glowacki J, Zhou S (2013) The role of inflammation in senescence of human MSCs. J Bone Miner Res 28:S80

    Google Scholar 

  162. Severino V, Alessio N, Farina A et al (2013) Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis 4, e911

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Jin HJ, Bae YK, Kim M et al (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14:17986–18001

    PubMed Central  PubMed  Google Scholar 

  164. Bellayr IH, Catalano JG, Lababidi S et al (2014) Gene markers of cellular aging in human multipotent stromal cells in culture. Stem Cell Res Ther 5:59e

    Google Scholar 

  165. Cmielova J, Havelek R, Soukup T et al (2012) Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol 88:393–404

    CAS  PubMed  Google Scholar 

  166. Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110

    CAS  PubMed  Google Scholar 

  167. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    CAS  PubMed  Google Scholar 

  168. Maddatu TP, Grubb SC, Bult CJ, Bogue MA (2012) Mouse Phenome Database (MPD). Nucleic Acids Res 40(Database issue):D887–D894

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    CAS  PubMed  Google Scholar 

  170. Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol A Biol Sci Med Sci 68:1209–1217

    PubMed Central  PubMed  Google Scholar 

  171. Harrison DE, Archer JR (1987) Genetic differences in effects of food restriction on aging in mice. J Nutr 117:376–382

    CAS  PubMed  Google Scholar 

  172. Forster MJ, Morris P, Sohal RS (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J 17:690–692

    PubMed Central  PubMed  Google Scholar 

  173. Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9:92–95

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Jowsey J (1966) Studies of Haversian systems in man and some animals. J Anat 100:857–864

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Kharode YP, Sharp MC, Bodine PV (2008) Utility of the ovariectomized rat as a model for human osteoporosis in drug discovery. Methods Mol Biol 455:111–124

    CAS  PubMed  Google Scholar 

  177. Wahl EC, Aronson J, Liu L et al (2010) Restoration of regenerative osteoblastogenesis in aged mice: modulation of TNF. J Bone Miner Res 25:114–123

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M (2014) Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 6:992–1009

    Google Scholar 

Download references

Acknowledgments

The authors have no conflicts to disclose.

Editors: John Williams, National Institute on Aging (NIA) and Joan McGowan, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NINDS), NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Glowacki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Glowacki, J., Vokes, T. (2016). Osteoporosis and Mechanisms of Skeletal Aging. In: Sierra, F., Kohanski, R. (eds) Advances in Geroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-23246-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23246-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23245-4

  • Online ISBN: 978-3-319-23246-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics