Skip to main content

Laboratory Tests in Crohn’s Disease

  • Chapter
  • First Online:
Crohn’s Disease

Abstract

Laboratory tests are useful for diagnosing Crohn’s disease, assessing disease activity, identifying complications, and monitoring response to therapy. Their role has been considered limited in the past due to lack of specificity. The introduction of biological therapies in inflammatory bowel disease (IBD) has renewed interest in inflammatory markers, especially C-reactive protein (CRP), given their potential to select responders to these treatments. There are several reasons why laboratory markers have been studied in IBD in the past decades: firstly, to gain an objective measurement of disease activity as symptoms are often subjective; secondly, to avoid invasive (endoscopic) procedures which are often a burden to the patient. An ideal marker should have many qualities. It should be easy and rapid to perform, cheap, and reproducible between patients and laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazlam MZ, Hodgson HJ. Peripheral blood monocyte cytokine production and acute phase response in inflammatory bowel disease. Gut. 1992;33:773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Niederau C, Backmerhoff F, Schumacher B, et al. Inflammatory mediators and acute phase proteins in patients with Crohn’s disease and ulcerative colitis. Hepatogastroenterology. 1997;44:90–107.

    CAS  PubMed  Google Scholar 

  3. Pepys MB, Druguet M, Klass HJ, et al. Immunological studies in inflammatory bowel disease. In: Porter R, Knight J, editors. Immunology of the gut, Ciba Foundation Symposium. Amsterdam: Elsevier/Excerpta Medica/North Holland; 1977. p. 283–97.

    Google Scholar 

  4. Tibble J, Teahon K, Thjodleifsson B, et al. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut. 2000;47:506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stange EF, Travis SP, Vermeire S, et al. European Crohn’s and Colitis Organisation. European evidence based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. Gut. 2006; 55(suppl 1):i1–i15.

    Google Scholar 

  6. Zholudev A, Zurakowski D, Young W, Leichtner A, Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am J Gastroenterol. 2004;99(11):2235–41.

    Article  PubMed  Google Scholar 

  7. Kallel L, Ayadi I, Matri S, et al. Fecal calprotectin is a predictive marker of relapse in Crohn’s disease involving the colon: a prospective study. Eur J Gastroenterol Hepatol. 2010;22(3):340–5.

    Article  CAS  PubMed  Google Scholar 

  8. Sidhu R, Wilson P, Wright A, et al. Faecallactoferrin–a novel test to differentiate between the irritable and inflamed bowel? Aliment Pharmacol Ther. 2010;31(12):1365–70.

    Article  CAS  PubMed  Google Scholar 

  9. Tillet WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of the pneumococcus. J Exp Med. 1930;52:561–71.

    Article  Google Scholar 

  10. Pepys MB. C-reactive protein fifty years on. Lancet. 1981;1:653–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ballou SP, Kushner I. C-reactive protein and the acute phase response. Adv Intern Med. 1992;37:313–36.

    CAS  PubMed  Google Scholar 

  12. Young B, Gleeson M, Cripps AW. C-reactive protein: a critical review. Pathology. 1991;23:118–24.

    Article  CAS  PubMed  Google Scholar 

  13. Mold C, Baca R, Du Clos TW. Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcgamma receptors. J Autoimmun. 2002;19:147–54.

    Article  PubMed  Google Scholar 

  14. Thomas RD, Westengard JC, Hay KL, et al. Calibration and validation for erythrocyte sedimentation tests. Role of the International Committee on Standardization in Hematology reference procedure. Arch Pathol Lab Med. 1993;117:719–23.

    CAS  PubMed  Google Scholar 

  15. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340:448–54.

    Article  CAS  PubMed  Google Scholar 

  16. Shine B, Berghouse L, Jones JE, et al. C-reactive protein as an aid in the differentiation of functional and inflammatory bowel disorders. Clin Chim Acta. 1985;148:105–9.

    Article  CAS  PubMed  Google Scholar 

  17. Poullis AP, Zar S, Sundaram KK, et al. A new, highly sensitive assay for Creactiveprotein can aid the differentiation of inflammatory bowel disorders from constipation- and diarrhoea-predominant functional bowel disorders. Eur J Gastroenterol Hepatol. 2002;14:409–12.

    Article  CAS  PubMed  Google Scholar 

  18. Tromm A, Tromm CD, Huppe D, et al. Evaluation of different laboratory tests and activity indices reflecting the inflammatory activity of Crohn’s disease. Scand J Gastroenterol. 1992;27:774–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sachar DB, Smith H, Chan S, et al. Erythrocytic sedimentation rate as a measure of clinical activity in inflammatory bowel disease. J Clin Gastroenterol. 1986;8:647–50.

    Article  CAS  PubMed  Google Scholar 

  20. Sachar DB, Luppescu NE, Bodian C, et al. Erythrocyte sedimentation as a measure of Crohn’s disease activity: opposite trends in ileitis versus colitis. J Clin Gastroenterol. 1990;12:643–6.

    Article  CAS  PubMed  Google Scholar 

  21. Fagan EA, Dyck RF, Maton PN, et al. Serum levels of C-reactive protein in Crohn’s disease and ulcerative colitis. Eur J Clin Invest. 1982;12:351–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.

    Article  CAS  PubMed  Google Scholar 

  23. Pearson TA, Mensah GA, Alexander RW, Centers for Disease Control and Prevention, Association AH, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511.

    Article  PubMed  Google Scholar 

  24. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.

    Article  CAS  PubMed  Google Scholar 

  25. Bataille R, Boccadoro M, Klein B, et al. C-reactive protein and beta-2 microglobulin produce a simple and powerful myeloma staging system. Blood. 1992;80:733–7.

    CAS  PubMed  Google Scholar 

  26. Brignola C, Campieri M, Bazzocchi G, et al. A laboratory index for predicting relapse in asymptomatic patients with Crohn’s disease. Gastroenterology. 1986;91:1490–4.

    Article  CAS  PubMed  Google Scholar 

  27. Boirivant M, Leoni M, Tariciotti D, et al. The clinical significance of serum C reactive protein levels in Crohn’s disease. Results of a prospective longitudinal study. J Clin Gastroenterol. 1988;10:401–5.

    Article  CAS  PubMed  Google Scholar 

  28. Consigny Y, Modigliani R, Colombel JF, et al. Biological markers of short term relapse in Crohn’s disease (CD). Gastroenterology. 2001;20(suppl):A53.

    Google Scholar 

  29. Louis E, Vermeire S, Rutgeerts P, et al. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with 2308 TNF gene polymorphism. Scand J Gastroenterol. 2002;37:818–24.

    Article  CAS  PubMed  Google Scholar 

  30. Rutgeerts P, Colombel J, Enns R, et al. Subanalysis from a phase 3 study on the evaluation of natalizumab in active Crohn’s disease. Gut. 2003;52(suppl):A239.

    Google Scholar 

  31. Sandborn WJ, Feagan BG, Radford-Smith G, et al. CDP571, a humanized monoclonal antibody to tumour necrosis factor alpha, for moderate to severe Crohn’s disease: a randomised, double blind, placebo controlled trial. Gut. 2004;53:1485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schreiber S, Rutgeerts P, Fedorak RN, et al. CDP870 Crohn’s Disease Study Group. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18.

    Google Scholar 

  33. Feagan B, Rutgeerts P, Schreiber S, et al. Low baseline CRP correlates with high placebo remission rate in Crohn’s disease Clinical trials at 12 weeks. Gastroenterology. 2005;128 suppl 2:A307.431.

    Google Scholar 

  34. Jensen KB, Jarnum S, Koudahl G, et al. Serum orosomucoid in ulcerative colitis: its relation to clinical activity, protein loss, and turnover of albumin and IgG. Scand J Gastroenterol. 1976;11:177–83.

    CAS  PubMed  Google Scholar 

  35. Andre C, Descos L, Landais P, et al. Assessment of appropriate laboratory measurements to supplement the Crohn’s disease activity index. Gut. 1981;22:571–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Descos L, Andre C, Beorghia S, et al. Serum levels of beta-2-microglobulin—a new marker of activity in Crohn’s disease. N Engl J Med. 1979;301:440–1.

    CAS  PubMed  Google Scholar 

  37. Manicourt DH, Orloff S. Serum levels of beta 2-microglobulin in Crohn’s disease. N Engl J Med. 1980;302:696.

    CAS  PubMed  Google Scholar 

  38. Zissis M, Afroudakis A, Galanopoulos G, et al. B2 microglobulin: is it a reliable marker of activity in inflammatory bowel disease? Am J Gastroenterol. 2001;96:2177–83.

    Article  CAS  PubMed  Google Scholar 

  39. Ricci G, D’Ambrosi A, Resca D, et al. Comparison of serum total sialic acid, C reactive protein, alpha 1-acid glycoprotein and beta 2-microglobulin in patients with non-malignant bowel diseases. Biomed Pharmacother. 1995;49:259–62.

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi K, Smale S, Premchand P, et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006;4(2):196–202.

    Article  CAS  PubMed  Google Scholar 

  41. Gisbert JP, McNicholl AG. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis. 2009;41(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  42. Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:50–4.

    Article  CAS  PubMed  Google Scholar 

  43. Tibble JA, Sigthorsson G, Foster R, et al. High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999;45:362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roseth AG, Aadland E, Jahnsen J, et al. Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein. Digestion. 1997;58:176–80.

    Article  CAS  PubMed  Google Scholar 

  45. Tibble JA, Sigthorsson G, Bridger S, et al. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22.

    Article  CAS  PubMed  Google Scholar 

  46. Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D’Inca R, Dal Pont E, Di Leo V, et al. Can calprotectin predict relapse in inflammatory bowel disease? Gastroenterology. 2005;128(suppl):A307.

    Google Scholar 

  48. Henderson P, Anderson NH, Wilson DC. The diagnostic accuracy of fecal calprotectin during the investigation of suspected pediatric inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2014;109:637–45.

    Article  CAS  PubMed  Google Scholar 

  49. Prideaux L, De Cruz P, Ng SC, Kamm MA. Serological antibodies in inflammatory bowel disease: a systematic review. Inflamm Bowel Dis. 2012;18(7):1340–55.

    Article  PubMed  Google Scholar 

  50. Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol. 2008;103:162–9.

    Article  PubMed  Google Scholar 

  51. Schroder O, Naumann M, Shastri Y, et al. Prospective evaluation of fecal neutrophil-derived proteins in identifying intestinal inflammation: combination of parameters does not improve diagnostic accuracy of calprotectin. Ailment Pharmacol Ther. 2007;26:1035–42.

    Article  CAS  Google Scholar 

  52. Bar-Gil Shitrit A, Braverman D, Stankiewics H. Fecal calprotectin as a predictor of abnormal colonic histology. Dis Colon Rectum. 2007;50:2188–93.

    Article  Google Scholar 

  53. von Roon A, Karamountzos L, Purkayastha S, et al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–13.

    Article  CAS  Google Scholar 

  54. Ricanek P, Brackmann S, Perminow G, et al. Evaluation of disease activity in IBD at the time of diagnosis by the use of clinical, biochemical, and fecal markers. Scand J Gastroenterol. 2011;46:1081–91.

    Article  CAS  PubMed  Google Scholar 

  55. Schoepfer A, Beglinger C, Straumann A, et al. Ulcerative colitis: correlation of the Rachmilewitz endoscopic activity index with fecal calprotectin, clinical activity, CRP, and blood leukocytes. Inflamm Bowel Dis. 2009;15:1851–8.

    Article  PubMed  Google Scholar 

  56. Jones J, Loftus E, Panaccione R, et al. Relationships between disease activity and serum and fecal biomarkers in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2008;6:1218–24.

    Article  PubMed  Google Scholar 

  57. Licata A, Randazzo C, Cappello M, et al. Fecal calprotectin in clinical practice: a non-invasive screening tool for patients with chronic diarrhea. J Clin Gastroenterol. 2012;46:504–8.

    Article  PubMed  Google Scholar 

  58. Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 2010;105(3):501–23; quiz 524.

    Article  PubMed  Google Scholar 

  59. World Gastroenterology Organisation (WGO). World Gastroenterology Organisation Global Guideline. Inflammatory bowel disease: a global perspective. Munich: World Gastroenterology Organisation (WGO); 2009.

    Google Scholar 

  60. Sandler RS, Loftus EV. Epidemiology of inflammatory bowel disease. In: Sartor RB, Sandborn WJ, Kirsner JB, editors. Kirsner’s inflammatory bowel diseases. 6th ed. Edinburgh: Saunders; 2004. p. 245–62.

    Google Scholar 

  61. Yu AP, Cabanilla LA, Wu EQ, Mulani PM, Chao J. The costs of Crohn’s disease in the United States and other Western countries: a systematic review. Curr Med Res Opin. 2008;24(2):319–28.

    Article  CAS  PubMed  Google Scholar 

  62. D’ Incà R, Dal Pont E, Di Leo V, Ferronato A, Fries W, Vettorato MG, et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22(4):429–37.

    Article  Google Scholar 

  63. Rahier JF, Magro F, Abreu C, et al. Second European evidence based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohns Colitis. 2014;8:443–68.

    Article  CAS  PubMed  Google Scholar 

  64. Alter MJ. Epidemiology of hepatitis B in Europe and in worldwide. J Hepatol. 2003;39(Supp II):S64–9.

    Article  PubMed  Google Scholar 

  65. Shahidi N, Fu Y-T, Qian H, Bressler B, et al. Performance of interferon-gamma release assays in patients with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2012;18:2034–42.

    Article  PubMed  Google Scholar 

  66. Carmona L, mez-Reino JJ, Rodrıguez-Valverde V, et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum. 2005;52:1766–72.

    Article  CAS  PubMed  Google Scholar 

  67. Kornbluth A, Sachar DB, Practice Parameters Committee of the American College of Gastroenterology. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology Practice Parameters Committee. Am J Gastroenterol. 2010;3:501–23.

    Article  Google Scholar 

  68. Mowat C, Cole A, Windsor A, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60:571–607.

    Article  PubMed  Google Scholar 

  69. Dye C, Scheele S, Dolin P, et al. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999;282:677–86.

    Article  CAS  PubMed  Google Scholar 

  70. Singh JA, Wells GA, Christensen R, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011;(2):CD008794.

    Google Scholar 

  71. Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345:1098–104.

    Article  CAS  PubMed  Google Scholar 

  72. Gomez-Reino JJ, Carmona L, Valverde VR, et al. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk—a multicentre active-surveillance report. Arthritis Rheum. 2003;48:2122–7.

    Article  CAS  PubMed  Google Scholar 

  73. Askling J, Fored CM, Brandt L, et al. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum. 2005;52:1986–92.

    Article  CAS  PubMed  Google Scholar 

  74. Wolfe F, Michaud K, Anderson J, et al. Tuberculosis infection in patients with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum. 2004;50:372–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine. 2012;30:2212–9.

    Article  CAS  PubMed  Google Scholar 

  76. Pal M, Zwerling A, Menzies D, et al. Systematic review: T-Cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008;149:177–84.

    Article  Google Scholar 

  77. Menzies D. Interpretation of repeated tuberculin tests. Boosting, conversion and reversion. Am J Respir Crit Care Med. 1999;159:15–21.

    Article  CAS  PubMed  Google Scholar 

  78. Marra F, Marra CA, Sadatsafavi M, et al. Cost-effectiveness of new interferon-based blood assay, QuantiFERON-TB Gold, in screening tuberculosis contacts. Int J Tuberc Lung Dis. 2008;1:1414–24.

    Google Scholar 

  79. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359:1541–9 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  80. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  81. Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, Panaccione R, Wolf D, Pollack P. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130:323–33; quiz 591.[PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  82. Sandborn WJ, Hanauer SB, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh DG, Panaccione R, Wolf D, Kent JD, Bittle B. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut. 2007;56:1232–9 [PubMed] [DOI].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reinisch W, Sandborn WJ, Hommes DW, D’Haens G, Hanauer S, Schreiber S, Panaccione R, Fedorak RN, Tighe MB, Huang B. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut. 2011;60:780–7 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  84. Lichtenstein GR, Yan S, Bala M, Blank M, Sands BE. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology. 2005;128:862–9 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  85. Vogelaar L, Spijker AV, van der Woude CJ. The impact of biologics on health-related quality of life in patients with inflammatory bowel disease. Clin Exp Gastroenterol. 2009;2:101–9 [PubMed].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peyrin-Biroulet L, Deltenre P, de Suray N, Branche J, Sandborn WJ, Colombel JF. Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials. Clin Gastroenterol Hepatol. 2008;6:644–53 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  87. Steenholdt C, Brynskov J, Thomsen OO, Munck LK, Fallingborg J, Christensen LA, Pedersen G, Kjeldsen J, Jacobsen BA, Oxholm AS. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: a randomised, controlled trial. Gut. 2014;63(6):919–27.

    Google Scholar 

  88. Maser EA, Villela R, Silverberg MS, Greenberg GR. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:1248–54.

    Article  CAS  PubMed  Google Scholar 

  89. Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59:49–54.

    Article  CAS  PubMed  Google Scholar 

  90. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348:601–8.

    Article  CAS  PubMed  Google Scholar 

  91. Karmiris K, Paintaud G, Noman M, Magdelaine-Beuzelin C, Ferrante M, Degenne D, et al. Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology. 2009;137:1628–40.

    Article  CAS  PubMed  Google Scholar 

  92. Colombel JF, Sandborn WJ, Allez M, et al. Association between plasma concentrations of certolizumab pegol and endoscopic outcomes of patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12:423–31.e1.

    Article  CAS  PubMed  Google Scholar 

  93. Feagan BG, Singh S, Lockton S, et al. Novel infliximab (IFX) and antibody-to-infliximab (ATI) assays are predictive of diseaseactivity in patients with Crohn’s disease (CD). Gastroenterology. 2012;142:S114–S.

    Google Scholar 

  94. Vande Casteele N, Compernolle G, Ballet V, et al. Individualised infliximab treatment using therapeutic drug monitoring: a prospective controlled trough level adapted infliXImab treatment (TAXIT) trial. J Crohns Colitis. 2012;6:S6.

    Article  Google Scholar 

  95. Vaughn BM-VM, Patwardhan V, et al. Prospective therapeutic drug monitoring to optimizing infliximab (IFX) maintenance therapy in patients with inflammatory bowel disease. Gastroenterology. 2014;146:5, S-54.

    Article  Google Scholar 

  96. Cornillie F, Hanauer SB, Diamond RH, et al. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: a retrospective analysis of the ACCENT I trial. Gut. 2014;63(11):1721–7. doi:10.1136/gutjnl-2012-304094.

    Google Scholar 

  97. Mazor Y, Kopylov U, Ben Hur D, et al. Evaluating adalimumab drug and antibody levels as predictors of clinical and laboratory response in Crohn’s disease patients. Gastroenterology. 2013;144:S778–S.

    Google Scholar 

  98. Wang SL, Hauenstein S, Ohrmund L, Shringarpure R, Salbato J, Reddy R, McCowen K, Shah S, Lockton S, Chuang E. Monitoring of adalimumab and antibodies-to-adalimumab levels in patient serum by the homogeneous mobility shift assay. J Pharm Biomed Anal. 2013;78–79:39–44 [PubMed] [DOI].

    Article  PubMed  CAS  Google Scholar 

  99. Ben-Horin S, Yavzori M, Katz L, et al. The immunogenic part of infliximab is the F(ab′)(2), but measuring antibodies to the intact infliximab molecule is more clinically useful. Gut. 2011;60:41–8.

    Article  CAS  PubMed  Google Scholar 

  100. Yamada A, Sono K, Hosoe N, Takada N, Suzuki Y. Monitoring functional serum antitumor necrosis factor antibody level in Crohn’s disease patients who maintained and those who lost response to anti-TNF. Inflamm Bowel Dis. 2010;16:1898–904.

    Article  PubMed  Google Scholar 

  101. Rojas JR, Taylor RP, Cunningham MR, et al. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharm Exp Ther. 2005;313:578–85.

    Article  CAS  Google Scholar 

  102. Vermeire S, Noman M, Van Assche G, Baert F, D’Haens G, Rutgeerts P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut. 2007;56:1226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn’s disease. Alimen Pharmacol Ther. 2011;33:987–95.

    Article  CAS  Google Scholar 

  104. Ungar B, Chowers Y, Yavzori M, et al. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut. 2014;63:1258–64.

    Article  CAS  PubMed  Google Scholar 

  105. VandeCasteele N, Gils A, Singh S, et al. Antibody response to infliximab and its impact on pharmacokinetics can be transient. Am J Gastroenterol. 2013;108:962–71.

    Article  CAS  Google Scholar 

  106. Wang SL, Ohrmund L, Hauenstein S, et al. Development and validation of a homogeneous mobility shift assay for the measurement of infliximab and antibodies-to-infliximab levels in patient serum. J Immunol Methods. 2012;382:177–88.

    Article  CAS  PubMed  Google Scholar 

  107. Farrell RJ, Alsahli M, Jeen YT, Falchuk KR, Peppercorn MA, Michetti P. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology. 2003;124:917–24.

    Article  CAS  PubMed  Google Scholar 

  108. Steenholdt C, Ainsworth MA, Tovey M, et al. Comparison of techniques for monitoring infliximab and antibodies against infliximab in Crohn’s disease. Ther Drug Monit. 2013;35:530–8.

    Article  CAS  PubMed  Google Scholar 

  109. Nanda KS, Cheifetz AS, Moss AC. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am J Gastroenterol. 2013;108:40–7; quiz 48.[PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  110. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–95 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  111. Lichtenstein GR, Diamond RH, Wagner CL, Fasanmade AA, Olson AD, Marano CW, Johanns J, Lang Y, Sandborn WJ. Clinical trial: benefits and risks of immunomodulators and maintenance infliximab for IBD-subgroup analyses across four randomized trials. Aliment Pharmacol Ther. 2009;30:210–26 [PubMed] [DOI].

    Google Scholar 

  112. AfifW LEV, Faubion WA, et al. Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am J Gastroenterol. 2010;105:1133–9.

    Article  CAS  Google Scholar 

  113. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Théorêt Y, Seidman EG. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–13 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  114. Osterman MT, Kundu R, Lichtenstein GR, Lewis JD. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology. 2006;130:1047–53 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  115. Lowry PW, Franklin CL, Weaver AL, Pike MG, Mays DC, Tremaine WJ, Lipsky JJ, Sandborn WJ. Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease. Gut. 2001;49:665–70 [PubMed].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X. Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:15–36.

    Article  CAS  PubMed  Google Scholar 

  117. Dubinsky MC, Yang H, Hassard PV, et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology. 2002;122:904–15.

    Article  CAS  PubMed  Google Scholar 

  118. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther. 1987;41:18–25.

    Article  CAS  PubMed  Google Scholar 

  119. Shaye OA, Yadegari M, Abreu MT, Poordad F, Simon K, Martin P, Papadakis KA, Ippoliti A, Vasiliauskas E, Tran TT. Hepatotoxicity of 6-mercaptopurine (6-MP) and Azathioprine (AZA) in adult IBD patients. Am J Gastroenterol. 2007;102:2488–94 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  120. Roblin X, Peyrin-Biroulet L, Phelip JM, Nancey S, Flourie B. A 6-thioguanine nucleotide threshold level of 400 pmol/8 x 10(8) erythrocytes predicts azathioprine refractoriness in patients with inflammatory bowel disease and normal TPMT activity. Am J Gastroenterol. 2008;103:3115–22 [PubMed] [DOI].

    Article  CAS  PubMed  Google Scholar 

  121. Seidman EG. Clinical use and practical application of TPMT enzyme and 6-mercaptopurine metabolite monitoring in IBD. Rev Gastroenterol Dis. 2003;3 Suppl 1:S30–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cappello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morreale, G.C., Cappello, M., Craxì, A. (2016). Laboratory Tests in Crohn’s Disease. In: Lo Re, G., Midiri, M. (eds) Crohn’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-23066-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23066-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23065-8

  • Online ISBN: 978-3-319-23066-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics