Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 345 Accesses

Abstract

All reactions were carried out in oven-dried glassware under nitrogen or argon atmosphere with magnetic stirring, unless stated otherwise. THF, Et2O, CH3CN, toluene, hexane and dichloromethane were dried by passage over activated alumina under nitrogen atmosphere (water content <30 ppm, Karl-Fischer titration) on an Innovative Technology Solvent Delivery System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The diazo carbon could not be detected.

  2. 2.

    One carbon aliphatic of one diastereoisomer could not be resolved.

  3. 3.

    The CH3 carbons of TIPS are splitting.

  4. 4.

    Not all the signals of the minor diastereoisomer were resolved by 13C.

  5. 5.

    Peaks are splitting due to conformers of methyl ester.

  6. 6.

    The diazo carbon could not be detected.

  7. 7.

    One of the aromatic carbons is overlapping.

  8. 8.

    Some phthalimide peaks could not be resolved.

  9. 9.

    Measured at 268 K.

  10. 10.

    An impurity is present in approx. 5 % in 1H NMR spectrum.

  11. 11.

    Measured at 268 K.

  12. 12.

    Measured at 268 K. The carbon atoms of the phthalimide group are not equivalent.

  13. 13.

    The phthalimide peaks of the trans diastereomer could not be resolved due to NMR exchange.

  14. 14.

    Only one CF3 peak could be detected.

  15. 15.

    Two carbonyls peaks are not overlapping.

  16. 16.

    All carbons couldn’t be resolved.

  17. 17.

    The integration differs from the reported values but the overall number of protons is correct.

  18. 18.

    Argon from gas cylinder was used as using central nitrogen supply with Drierite filter gave blue complexes.

  19. 19.

    Blue complex gave lower er and poorly reproducible results.

  20. 20.

    Dried by dissolving in benzene then removing the solvent under reduced pressure and drying in high vacuo.

  21. 21.

    2 carbon signal overlapping.

  22. 22.

    Structure is registered in CCDC under the number CCDC 988525.

  23. 23.

    Due to shoulder in the peaks, separation was not complete (cf HPLC spectra).

  24. 24.

    The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 933180.

  25. 25.

    The methylenation crude was used directly without isolation of methylenemalonate compound.

  26. 26.

    Two peaks under this signal as determined by HMBC.

  27. 27.

    A peak is not resolved in the 128.45–128.40 massif.

  28. 28.

    The deuterated carbon was not resolved.

  29. 29.

    One peak corresponding to the Me of TBDMS has been cut due to small acquisition window.

  30. 30.

    HRMS could not be detected for this compound.

  31. 31.

    Carbon with fluoride not resolved.

  32. 32.

    Two peaks of the TBS have been cut during analysis. One aromatic peak overlapped.

  33. 33.

    2 peaks overlap.

  34. 34.

    Peaks of impurities are present in the aromatic area.

  35. 35.

    NH2 peak over-integrated due to water in CDCl3.

  36. 36.

    No yield was recorded.

References

  1. am Ende DJ, DeVries KM, Clifford PJ, Brenek SJ (1998) Org Process Res Dev 2:382

    Google Scholar 

  2. Brice JL, Meerdink JE, Stahl SS (1845) Org Lett 2004:6

    Google Scholar 

  3. Yar M, Fritz SP, Gates PJ, McGarrigle EM, Aggarwal VK (2012) Eur J Org Chem 2012:160

    Article  CAS  Google Scholar 

  4. Wyatt P, Hudson A, Charmant J, Orpen AG, Phetmung H (2006) Org Biomol Chem 4:2218

    Article  CAS  Google Scholar 

  5. Kitamura M, Tashiro N, Miyagawa S, Okauchi T (1037) Synthesis 2011:7

    Google Scholar 

  6. González-Bobes F, Fenster MDB, Kiau S, Kolla L, Kolotuchin S, Soumeillant M (2008) Adv Synth Catal 350:813

    Article  Google Scholar 

  7. Miller JA, Hennessy EJ, Marshall WJ, Scialdone MA, Nguyen ST (2003) J Org Chem 68:7884

    Article  CAS  Google Scholar 

  8. Abu-Elfotoh A-M, Phomkeona K, Shibatomi K, Iwasa S (2010) Angew Chem Int Ed 49:8439

    Article  CAS  Google Scholar 

  9. Zhao J-F, Tan B-H, Loh T-P (2011) Chem Sci 2:349

    Article  CAS  Google Scholar 

  10. Zhang L, Sun J, Kozmin SA (2006) Tetrahedron 62:11371

    Article  CAS  Google Scholar 

  11. Yu JQ, Wu HC, Corey EJ (2005) Org Lett 7:1415

    Article  CAS  Google Scholar 

  12. Larsen SD, May P, Romines K, Schnute ME, Tanis SP (2004) Patent: US2004/138449 A1

    Google Scholar 

  13. Magnus P, Barth L (1995) Tetrahedron 51:11075

    Article  CAS  Google Scholar 

  14. Kanie O, Crawley SC, Palcic MM, Hindsgaul O (1993) Carbohydr Res 243:139

    Article  CAS  Google Scholar 

  15. Krapcho AP, Jahngen EGE Jr, Lovey AJ, Short FW (1091) Tetrahedron Lett 1974:15

    Google Scholar 

  16. Takacs JM, Xu Z, Jiang X-T, Leonov AP, Theriot GC (2002) Org Lett 4:3843

    Article  CAS  Google Scholar 

  17. Kacprzak K (2003) Synth Commun 33:1499

    Article  CAS  Google Scholar 

  18. Baret N, Dulcere J-P, Rodriguez J, Pons J-M, Faure R (2000) Eur J Org Chem 2000:1507

    Article  Google Scholar 

  19. Tolnai GL, Ganss S, Brand JP, Waser J (2012) Org Lett 15:112

    Article  Google Scholar 

  20. Brand JP, Charpentier J, Waser J (2009) Angew Chem Int Ed 48:9346

    Article  CAS  Google Scholar 

  21. Kanie O, Crawley SC, Palcic MM, Hindsgaul O (1993) Carbohydr Res 243:139

    Article  CAS  Google Scholar 

  22. Kaburagi Y, Tokuyama H, Fukuyama T (2004) J Am Chem Soc 126:10246

    Article  CAS  Google Scholar 

  23. Mazzocchi PH, Wilson P, Khachik F, Klingler L, Minamikawa S (1983) J Org Chem 48:2981

    Article  CAS  Google Scholar 

  24. Hinde NJ, Hall CD (1998) J Chem Soc Perkin Trans 2:1249

    Article  Google Scholar 

  25. Kacprzak K (2003) Synth Commun 33:1499

    Article  CAS  Google Scholar 

  26. Bayer E, Geckeler K (1979) Angew Chem Int Ed 18:533

    Article  Google Scholar 

  27. Sibi MP, Liu M (2000) Org Lett 2:3393

    Article  CAS  Google Scholar 

  28. de Nanteuil F, Waser J (2011) Angew Chem Int Ed 50:12075

    Article  Google Scholar 

  29. Bosch M, Schalf M (2003) J Org Chem 68:5225

    Article  CAS  Google Scholar 

  30. Harada N-A, Nishikata T, Nagashima H (2012) Tetrahedron 68:3243

    Article  CAS  Google Scholar 

  31. Matysiak S, Fitznar H-P, Schnell R, Pfleiderer W (1998) Helv Chim Acta 81:1545

    Article  CAS  Google Scholar 

  32. Nummert V, Piirsalu M, Mäemets V, Vahur S, Koppel IA (2009) J Phys Org Chem 22:1155

    Article  CAS  Google Scholar 

  33. Liu H, Shi G, Pan S, Jiang Y, Zhang Y (2013) Org Lett 15:4098

    Article  CAS  Google Scholar 

  34. Ji M, Wang X, Lim YN, Kang Y-W, Jang H-Y (2013) Eur J Org Chem 35:7881

    Article  Google Scholar 

  35. Payack JF, Hughes DL, Cai D, Cottrell IF, Verhoeven TR (2002) Org Synth 79:19

    Article  CAS  Google Scholar 

  36. Vuluga D, Legros J, Crousse B, Bonnet-Delpon D (2009) Eur J Org Chem 2009:3513

    Article  Google Scholar 

  37. Evans DA, Peterson GS, Johnson JS, Barnes DM, Campos KR, Woerpel KA (1998) J Org Chem 63:4541

    Article  CAS  Google Scholar 

  38. Bugarin A, Jones KD, Connell BT (2010) Chem Commun 46:1715

    Article  CAS  Google Scholar 

  39. De Fusco C, Fuoco T, Croce G, Lattanzi A (2012) Org Lett 14:4078

    Article  Google Scholar 

  40. Jabin I, Revial G, Monnier-Benoit N, Netchitailo P (2001) J Org Chem 66:256

    Article  CAS  Google Scholar 

  41. Nickerson DM, Mattson AE (2012) Chem Eur J 18:8310

    Article  CAS  Google Scholar 

  42. Wen L, Shen Q, Lu L (2010) Org Lett 12:4655

    Article  CAS  Google Scholar 

  43. Nickerson DM, Mattson AE (2012) Chem Eur J 18:8310

    Article  CAS  Google Scholar 

  44. Stojanovic A, Renaud P, Schenk K (2004) Helv Chim Acta 81:268

    Article  Google Scholar 

  45. Lam PYS, Vincent G, Bonne D, Clark CG (2003) Tetrahedron Lett 44:4927

    Article  CAS  Google Scholar 

  46. Gooßen LJ, Blanchot M, Brinkmann C, Gooßen K, Karch R, Rivas-Nass A (2006) J Org Chem 71:9506

    Article  Google Scholar 

  47. Alacid E, Nájera C (2008) Adv Synth Catal 350:1316

    Article  CAS  Google Scholar 

  48. Susanto W, Chu C-Y, Ang WJ, Chou T-C, Lo L-C, Lam Y (2012) J Org Chem 77:2729

    Article  CAS  Google Scholar 

  49. Pawluć P, Franczyk A, Walkowiak J, Hreczycho G, Kubicki M, Marciniec B (2012) Tetrahedron 68:3545

    Article  Google Scholar 

  50. Parsons AT, Johnson JS (2009) J Am Chem Soc 131:14202

    Article  CAS  Google Scholar 

  51. Benfatti F, Nanteuil FD, Waser J (2011) Org Lett 14:386

    Google Scholar 

  52. Alford JS, Davies HML (2012) Org Lett 14:6020

    Article  CAS  Google Scholar 

  53. Ventura DL, Li Z, Coleman MG, Davies HML (2009) Tetrahedron 65:3052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian de Nanteuil .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Nanteuil, F. (2016). Experimental Part. In: Synthesis and Reactivity of Donor-Acceptor Substituted Aminocyclopropanes and Aminocyclobutanes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23006-1_5

Download citation

Publish with us

Policies and ethics