Skip to main content

A Model of Larval Biomechanics Reveals Exploitable Passive Properties for Efficient Locomotion

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9222))

Included in the following conference series:

Abstract

To better understand the role of natural dynamics in motor control, we have constructed a mathematical model of crawling mechanics in larval Drosophila.

The model accounts for key anatomical features such as a segmentally patterned, viscoelastic outer body wall (cuticle); a non-segmented inner cavity (haemocoel) filled with incompressible fluid that enables visceral pistoning; and claw-like protrusions (denticle bands) giving rise to asymmetric friction.

Under conditions of light damping and low forward kinetic friction, and with a single cuticle segment initially compressed, the passive dynamics of this model produce wave-like motion resembling that of real larvae. The presence of a volume-conserving hydrostatic skeleton allows a wave reaching the anterior of the body to initiate a new wave at the posterior, thus recycling energy. Forcing our model with a sinusoidal input reveals conditions under which power transfer from control to body may be maximised. A minimal control scheme using segmentally localised positive feedback is able to exploit these conditions in order to maintain wave-like motion indefinitely. These principles could form the basis of a design for a novel, soft-bodied, crawling robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGeer, T.: Passive Dynamic Walking. The International Journal of Robotics Research 62(82), 62–82 (1990)

    Article  Google Scholar 

  2. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biological Cybernetics 105, 355–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shepherd, R.: Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  4. Tytell, E.D., Holmes, P., Cohen, A.H.: Spikes alone do not behaviour make: Why neuroscience needs biomechanics. Current Opinion in Neurobiology 21(5), 816–822 (2011)

    Article  Google Scholar 

  5. Kier, W.M.: The diversity of hydrostatic skeletons. The Journal of Experimental Biology 215(8), 1247–1257 (2012)

    Article  Google Scholar 

  6. Simon, M.A., Woods, W.A., Serebrenik, Y.V., Simon, S.M., van Griethuijsen, L.I., Socha, J.J., Lee, W.K., Trimmer, B.A.: Visceral-locomotory pistoning in crawling caterpillars. Current Biology 20(16), 1458–1463 (2010)

    Article  Google Scholar 

  7. Heckscher, E.S., Lockery, S.R., Doe, C.Q.: Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. The Journal of Neuroscience 32(36), 12460–12471 (2012)

    Article  Google Scholar 

  8. Berrigan, D., Pepin, D.J.: How Maggots Move: Allometry and Kinematics of Crawling in Larval Diptera. J. Insect Physiol. 41(4), 329–337 (1995)

    Article  Google Scholar 

  9. Landgraf, M., Bossing, T., Technau, G.M., Bate, M.: The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. The Journal of Neuroscience 17(24), 9642–9655 (1997)

    Google Scholar 

  10. Fox, L.E., Soll, D.R., Wu, C.: Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine \(\beta \) hydroxlyase mutation. The Journal of Neuroscience 26(5), 1486–1498 (2006)

    Article  Google Scholar 

  11. Boyle, J.H., Berri, S., Cohen, N.: Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Frontiers in Computational Neuroscience 6, 1–10 (2012)

    Article  Google Scholar 

  12. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York (1993)

    Google Scholar 

  13. Skierczynski, B.A., Wilson, R.J., Kristan, W.B., Skalak, R.: A model of the hydrostatic skeleton of the leech. Journal of Theoretical Biology 181(4), 329–342 (1996)

    Article  Google Scholar 

  14. Alscher, C.: Simulating the motion of the leech : A biomechanical application of DAEs. Numerical Algorithms 19, 1–12 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Alexandre, C.: Cuticle preparation of Drosophila embryos and larvae. In: Dahmann, C (ed) Methods in Molecular Biology : Drosophila: Methods and Protocols, Ch. 11, pp. 197–205. Humana Press Inc. (2008)

    Google Scholar 

  16. Apostolopoulou, A.A., Hersperger, F., Mazija, L., Widmann, A., Wüst, A., Thum, A.S.: Composition of agarose substrate affects behavioral output of Drosophila larvae. Frontiers in Behavioral Neuroscience 8, 1–11 (2014)

    Google Scholar 

  17. Inestrosa, N.C., Sunkel, C.E., Arriagada, J., Garrido, J., Herrera, R.G.: Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect? Genetica 97, 205–210 (1996)

    Article  Google Scholar 

  18. Hughes, C.L., Thomas, J.B.: A Sensory Feedback Circuit Coordinates Muscle Activity in Drosophila. Mol. Cell. Neurosci. 35(2), 383–396 (2007)

    Article  Google Scholar 

  19. Inada, K., Kohsaka, H., Takasu, E., Nose, A.: Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLOS ONE 6(12), 1–10 (2011)

    Google Scholar 

  20. Lahiri, S., Shen, K., Klein, M., Tang, A., Kane, E., Gershow, M., Garrity, P., Samuel, A.: Two alternating motor programs drive navigation in Drosophila larva. PLOS ONE 6(8), 1–12 (2011)

    Article  Google Scholar 

  21. Ross, D., Lagogiannis, K., Webb, B.: Online supplementary material. http://maggot.eu/documents/2015/04/SuppMechBodymodel.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Lagogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ross, D., Lagogiannis, K., Webb, B. (2015). A Model of Larval Biomechanics Reveals Exploitable Passive Properties for Efficient Locomotion. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22979-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22978-2

  • Online ISBN: 978-3-319-22979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics