Skip to main content

Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging

  • Chapter
Light-Responsive Nanostructured Systems for Applications in Nanomedicine

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 370))

Abstract

Self-assembling nanoparticles of amphiphilic polymers are viable delivery vehicles for transporting hydrophobic molecules across hydrophilic media. Noncovalent contacts between the hydrophobic domains of their macromolecular components are responsible for their formation and for providing a nonpolar environment for the encapsulated guests. However, such interactions are reversible and, as a result, these supramolecular hosts can dissociate into their constituents amphiphiles to release the encapsulated cargo. Operating principles to probe the integrity of the nanocarriers and the dynamic exchange of their components are, therefore, essential to monitor the fate of these supramolecular assemblies in biological media. The co-encapsulation of complementary chromophores within their nonpolar interior offers the opportunity to assess their stability on the basis of energy transfer and fluorescence measurements. Indeed, the exchange of excitation energy between the entrapped chromophores can only occur if the nanoparticles retain their integrity to maintain donors and acceptors in close proximity. In fact, energy-transfer schemes are becoming invaluable protocols to elucidate the transport properties of these fascinating supramolecular constructs in a diversity of biological preparations and can facilitate the identification of strategies to deliver contrast agents and/or drugs to target locations in living organisms for potential diagnostic and/or therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winsor PA (1948) Trans Faraday Soc 44:376–382

    Article  CAS  Google Scholar 

  2. Winsor PA (1954) Solvent properties of amphiphilic compounds. Butterworths, London

    Google Scholar 

  3. Nagarajan R (2011) Amphiphilic surfactants and amphiphilic polymers: principles of molecular assembly. In: Amphiphiles: molecular assembly and applications, ACS symposium series. American Chemical Society, Washington, DC, pp 1–22, Ch. 1

    Chapter  Google Scholar 

  4. Alexandridis P, Lindman B (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam

    Google Scholar 

  5. McCormick CL (2000) Stimuli-responsive water soluble and amphiphilic polymers, ACS symposium series. American Chemical Society, Washington, DC

    Book  Google Scholar 

  6. Müller AHE, Borisov O (2011) Self-organized nanostructures of amphiphilic block copolymers I. Springer, Berlin

    Google Scholar 

  7. Müller AHE, Borisov O (2011) Self-organized nanostructures of amphiphilic block copolymers II. Springer, New York

    Google Scholar 

  8. Hamley IW (2000) Introduction to soft matter: polymers, colloids, amphiphiles, and liquid crystals. Wiley, New York

    Google Scholar 

  9. Holmberg K, Jonsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, Chichester

    Book  Google Scholar 

  10. Yamashita H, Oosawa M (1995) Patent 7309714 A2 951128, Kanebo Ltd., Japan

    Google Scholar 

  11. O’Lenick AJ Jr (1995) US Patent 5475125 A 951212, Siltech Inc.

    Google Scholar 

  12. Dupuis C (1995) Patent 684041 A1 951129, Oreal S.A., Europ

    Google Scholar 

  13. Sakuta K (1995) Patent 7304627 A2 951121, Shinetsu Chem. Ind. Co., Japan

    Google Scholar 

  14. Mohammed RA, Bailey AI, Luckham PF, Taylor SE (1994) Colloids Surf A Physicochem Eng Asp 83:261–271

    Article  CAS  Google Scholar 

  15. Amaravathi M, Pandey BP (1991) Res Ind 36:169

    Google Scholar 

  16. Blease TG, Evans JG, Hughes L, Loll P (1993) In: Garrett P (ed) Defoaming, vol 45, Surfactant science series. Marcel Dekker, New York, p 299

    Google Scholar 

  17. Schmidt DL (1996) In: Prudhomme RK, Khan SA (eds) Foams, vol 57, Surfactant science series. Marcel Dekker, New York, p 287

    Google Scholar 

  18. Bader H, Ringsdorf H, Schmidt B (1984) Angew Makromol Chem 123:457–485

    Article  Google Scholar 

  19. Fox ME, Szoka FC, Fréchet JMJ (2009) Acc Chem Res 42:1141–1151

    Article  CAS  Google Scholar 

  20. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai YJ (1993) Control Release 24:119–132

    Article  CAS  Google Scholar 

  21. Torchilin VP (2007) AAPS J 9:E-128–E-147

    Article  CAS  Google Scholar 

  22. Jones M-C, Leroux J-C (1999) Eur J Pharm Biopharm 48:101–111

    Article  CAS  Google Scholar 

  23. Adams ML, Lavasanifar A, Kwon GS (2003) J Pharm Sci 92:1343–1355

    Article  CAS  Google Scholar 

  24. Husseini AG, Pitt WG (2008) Adv Drug Deliv Rev 60:1137–1152

    Article  CAS  Google Scholar 

  25. Mondon K, Gurny R, Möller M (2008) Chimia 62:832–840

    Article  CAS  Google Scholar 

  26. Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC (2008) Prog Polym Sci 33:113–137

    Article  CAS  Google Scholar 

  27. Kim S, Shi Y, Kim JY, Park K, Cheng J-X (2010) Expert Opin Drug Deliv 7:49–62

    Article  CAS  Google Scholar 

  28. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Adv Drug Deliv Rev 64:836–851

    Article  CAS  Google Scholar 

  29. Wang Y, Grayson SM (2012) Adv Drug Deliv Rev 64:852–865

    Article  CAS  Google Scholar 

  30. Jin Q, Maji S, Agarwal S (2012) Polym Chem 3:2785–2793

    Article  CAS  Google Scholar 

  31. Lalatsa A, Schatzlein AG, Mazza M, Thi BHL, Uchegbu IFJ (2012) Control Release 161:523–536

    Article  CAS  Google Scholar 

  32. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Chem Soc Rev 42:1147–1235

    Article  CAS  Google Scholar 

  33. Lu Y, Park K (2013) Int J Pharm 452:198–214

    Article  CAS  Google Scholar 

  34. Tyler JY, Xu X-M, Cheng J-X (2013) Nanoscale 5:8821–8836

    Article  CAS  Google Scholar 

  35. Wang DR, Wang XG (2013) Prog Polym Sci 38:271–301

    Article  CAS  Google Scholar 

  36. Gu L, Faig A, Abdelhamid D, Uhrich K (2014) Acc Chem Res 47:2867–2877

    Article  CAS  Google Scholar 

  37. Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biomaterials 34:8430–8443

    Article  CAS  Google Scholar 

  38. Alakhova DY, Kabanov AV (2014) Mol Pharm 11:2566–2578

    Article  CAS  Google Scholar 

  39. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Chengk Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang X-J, Rocchi P, Peng L (2015) Proc Natl Acad Sci 112:2978–2983

    Article  CAS  Google Scholar 

  40. Makino A (2014) Polym J 46:783–791

    Article  CAS  Google Scholar 

  41. Torchilin VP (2001) J Control Release 73:137–172

    Article  CAS  Google Scholar 

  42. Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S (2013) Chem Soc Rev 42:7421–7435

    Article  CAS  Google Scholar 

  43. Mura S, Nicolas J, Couvreur P (2013) Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  44. Lv M-Q, Shi Y, Yang W-T, Fu Z-F (2013) J Appl Polym Sci 128:332–339

    Article  CAS  Google Scholar 

  45. Smeets NMB (2013) Eur Polym J 49:2528–2544

    Article  CAS  Google Scholar 

  46. Yildiz I, Impellizzeri S, Deniz E, McCaughan B, Callan JF, Raymo FM (2011) J Am Chem Soc 133:871–879

    Article  CAS  Google Scholar 

  47. Wang Y, Al AM, He J, Grayson SM (2014) Polym Chem 5:622–629

    Article  CAS  Google Scholar 

  48. Muhlebach A, Gaynor SG, Matyjaszewski K (1998) Macromolecules 31:6046–6052

    Article  Google Scholar 

  49. Rikkou MD, Kolokasi M, Matyjaszewski K, Patrickios CS (2010) J Polym Sci A 48:1878–1886

    Article  CAS  Google Scholar 

  50. Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios CS (2012) Polym Chem 3:105–116

    Article  CAS  Google Scholar 

  51. Hua M, Kaneko T, Liu X-Y, Chen M-Q, Akashi M (2005) Polym J 37:59–64

    Article  CAS  Google Scholar 

  52. York AW, Kirkland SE, McCormick CL (2008) Adv Drug Deliv Rev 60:1018–1036

    Article  CAS  Google Scholar 

  53. Huang Z, Zhang X, Zhang X, Fu C, Wang K, Yuan J, Tao L, Wei Y (2015) Polym Chem 6:607–612

    Article  CAS  Google Scholar 

  54. Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley, Weinheim

    Book  Google Scholar 

  55. Shi X, Zhou W, Qiu Q, An Z (2012) Chem Commun 48:7389–7391

    Article  CAS  Google Scholar 

  56. Rikkou-Kalourkoti M, Elladiou M, Patrickios CS (2015) J Polym Sci 53:1310–1319

    Article  CAS  Google Scholar 

  57. Fu J, Cheng Z, Zhou N, Zhu J, Zhang W, Zhu X (2009) e-Polymers 18:1–11

    Google Scholar 

  58. Garnier S, Laschewsky A (2006) Colloid Polym Sci 284:1243–1254

    Article  CAS  Google Scholar 

  59. Smith AE, Xu X, McCormick CL (2010) Prog Polym Sci 35:45–93

    Article  CAS  Google Scholar 

  60. Lowe AB, McCormick CL (2007) Prog Polym Sci 32:283–351

    Article  CAS  Google Scholar 

  61. Koda Y, Terashima T, Sawamotoa M, Maynard HD (2015) Polym Chem 6:240–247

    Article  CAS  Google Scholar 

  62. Hawker CJ, Bosman AW, Harth E (2001) Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  63. Grubbs RB (2011) Polym Rev 51:104–137

    Article  CAS  Google Scholar 

  64. Li X, Ni X, Liang Z, Shen Z (2012) J Polym Sci A Polym Chem 50:2037–2044

    Article  CAS  Google Scholar 

  65. Sutthasupa S, Shiotsuki M, Sanda F (2010) Polym J 42:905–915

    Article  CAS  Google Scholar 

  66. Nomura K, Abdellatif MM (2010) Polymer 51:1861–1881

    Article  CAS  Google Scholar 

  67. Nuyken O, Pask SD (2013) Polymers 5:361–403

    Article  CAS  Google Scholar 

  68. Zhao Y, Wu Y, Yan G, Zhang K (2014) RSC Adv 4:51194–51200

    Article  CAS  Google Scholar 

  69. Hartley GS (1941) Trans Faraday Soc 37:130–133

    Article  CAS  Google Scholar 

  70. Dukhin SS, Kretzchmar G, Miller B (1995) Dynamics of adsorption at liquid interfaces. Elsevier, Amsterdam

    Google Scholar 

  71. van Oss CJ (2006) Interfacial forces in aqueous media, 2nd edn. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  72. Gray GW (1998) Handbook of liquid crystals. Wiley, Weinheim

    Google Scholar 

  73. Figueiredo Neto AM, Salinas SRA (2005) The physics of lyotropic liquid crystals: phase transitions and structural properties. Oxford University Press, Oxford

    Book  Google Scholar 

  74. Garti N, Somasundaran P, Mezzenga R (2012) Self-assembled supramolecular architectures: lyotropic liquid crystals. Wiley, Weinheim

    Book  Google Scholar 

  75. Gelbart WM, Ben-Shaul A, Roux D (1994) Micelles, membranes, microemulsions, and monolayers. Springer, New York

    Book  Google Scholar 

  76. Hamley IW (2007) Introduction to soft matter: synthetic and biological self-assembling materials. Wiley, Chichester

    Book  Google Scholar 

  77. Förster S, Konrad M (2003) J Mater Chem 13:2671–2688

    Article  CAS  Google Scholar 

  78. Bucknall DG, Anderson HL (2003) Science 302:1904–1905

    Article  CAS  Google Scholar 

  79. Zvelindovsky AV (2007) Nanostructured soft matter: experiment, theory, simulation and perspectives. Springer, Dordrecht

    Book  Google Scholar 

  80. Torchilin V, Amiji MM (2010) Handbook of materials for nanomedicine. Pan Stanford, Singapore

    Google Scholar 

  81. Zhao J, Fung BM (1993) Langmuir 9:1228–1231

    Article  CAS  Google Scholar 

  82. Al-Soufi W, Piñeiro L, Novo M (2012) J Colloid Interface Sci 370:102–110

    Article  CAS  Google Scholar 

  83. Chakraborty T, Chakraborty I, Ghosh S (2011) Arab J Chem 4:265–270

    Article  CAS  Google Scholar 

  84. Topel Ö, Çakır BA, Budama L, Hoda N (2013) J Mol Liq 177:40–43

    Article  CAS  Google Scholar 

  85. Prazeres TJV, Beija M, Fernandes FV, Marcelino PGA, Farinha JPS, Martinho JMG (2012) Inorg Chim Acta 381:181–187

    Article  CAS  Google Scholar 

  86. Fendler JH (1982) Membrane mimetic chemistry. Wiley, New York, pp 6–47

    Google Scholar 

  87. Berthod A, Garcia-Alvarez-Coque C (eds) (2000) Micellar liquid chromatography, vol 83, Chromatography series. Dekker, New York, pp 503–525

    Google Scholar 

  88. Van Os NM, Haak JR, Rupert LAM (1993) Physico-chemical properties of selected anionic, cationic and nonionic surfactants. Elsevier, Amsterdam

    Google Scholar 

  89. Hinze WL, Armstrong DW (eds) (1987) Ordered media in chemical separations, vol 342, ACS symposium series. American Chemical Society, Washington, DC, pp 2–82

    Book  Google Scholar 

  90. Armstrong DW (1985) Sep Purif Methods 14:213–304

    Article  CAS  Google Scholar 

  91. Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  92. Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuo PL (1985) Langmuir 1:352–355

    Article  Google Scholar 

  93. Aguilar J, Carpena P, Molina-Bolívar JA, Carnero Ruiz C (2003) J Colloid Surf Sci 258:116–122

    Article  CAS  Google Scholar 

  94. Bhaisare ML, Pandey S, Khan MS, Talib A, Wu H-F (2015) Talanta 132:572–578

    Article  CAS  Google Scholar 

  95. Swaminathan S, Fowley C, McCaughan B, Cusido J, Callan JF, Raymo FM (2014) J Am Chem Soc 136:7907–7913

    Article  CAS  Google Scholar 

  96. Mukherjee I, Moulik SP, Rakshit AK (2013) J Colloid Interface Sci 394:329–336

    Article  CAS  Google Scholar 

  97. Mittal KL (1972) J Pharm Sci 61:1334–1335

    Article  CAS  Google Scholar 

  98. Castro MJL, Ritacco H, Kovensky J, Fernández-Cirelli A (2001) J Chem Educ 78:347–348

    Article  CAS  Google Scholar 

  99. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Dover, Mineola

    Google Scholar 

  100. Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum, New York

    Book  Google Scholar 

  101. Meurant G (1990) Introduction to dynamic light scattering by macromolecules. Academic, London

    Google Scholar 

  102. Jonasz M, Fournier GR (2007) Light scattering by particles in water: theoretical and experimental foundations. Elsevier, San Diego

    Google Scholar 

  103. Zetasizer Nano Series User Manual (2004) Man0317, Issue 1.1, © Malvern Instruments Ltd., Malvern, Feb 2004

    Google Scholar 

  104. Förster T (1946) Naturwissenschaften 6:166–175

    Article  Google Scholar 

  105. Förster T (1948) Ann Phys 2:55–75

    Article  Google Scholar 

  106. Förster T (1949) Z Naturforsch A 4:321–327

    Google Scholar 

  107. Förster T (1951) Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht, Gottingen

    Google Scholar 

  108. Förster T (1959) Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  109. Förster T (1960) Radiat Res Suppl 2:326–339

    Article  Google Scholar 

  110. Van Der Meer BV, Coker G III, Simon Chen S-Y (1994) Resonance energy transfer: theory and data. Wiley, New York

    Google Scholar 

  111. Braslavsky SE, Fron E, Rodríguez HB, San Roman E, Scholes GD, Schweitzer G, Valeur B, Wirz J (2008) Photochem Photobiol Sci 7:1444–1448

    Article  CAS  Google Scholar 

  112. Broussard JA, Rappaz B, Webb DJ, Brown CM (2013) Nat Protoc 8:265–281

    Article  CAS  Google Scholar 

  113. Gravier J, Navarro FP, Delmas T, Mittler F, Couffin AC, Vinet F, Texier I (2011) J Biomed Opt 16:096013

    Article  CAS  Google Scholar 

  114. Navarro FP, Mittler F, Berger M, Josserand V, Gravier J, Vinet F, Texier I (2012) J Biomed Nanotechnol 8:594–604

    Article  CAS  Google Scholar 

  115. Navarro FP, Berger M, Guillermet S, Josserand V, Guyon L, Neumann E, Vinet F, Texier I (2012) J Biomed Nanotechnol 8:730–774

    Article  CAS  Google Scholar 

  116. Navarro FP, Creusat G, Frochot C, Moussaron A, Verhille M, Vanderesse R, Thomann J-S, Boisseau P, Texier I, Couffin A-C, Barberi-Heyob M (2014) J Photochem Photobiol B Biol 130:161–169

    Article  CAS  Google Scholar 

  117. Mérian J, Gravier J, Navarro F, Texier I (2012) Molecules 17:5564–5591

    Article  CAS  Google Scholar 

  118. Gravier J, Sancey L, Coll JL, Hirsjärvi S, Benoit JP, Vinet F, Texier I (2011) Proc SPIE 7910:79100W-1–79100W-12

    Article  Google Scholar 

  119. Cao T, Munk P, Ramireddy C, Tuzar Z, Webber SE (1991) Macromolecules 24:6300–6305

    Article  CAS  Google Scholar 

  120. Stepanek M, Krijtova K, Prochazka K, Teng Y, Webber SE, Munk P (1998) Acta Polym 49:96–102

    Article  CAS  Google Scholar 

  121. Hu Y, Kramer MC, Boudreaux CJ, McCormick CL (1995) Macromolecules 28:7100–7106

    Article  CAS  Google Scholar 

  122. Chen H, Kim S, He W, Wang H, Low PS, Park K, Cheng JX (2008) Langmuir 24:5213–5217

    Article  CAS  Google Scholar 

  123. Chen HT, Kim SW, Li L, Wang SY, Park K, Cheng JX (2008) Proc Natl Acad Sci U S A 105:6596–6601

    Article  CAS  Google Scholar 

  124. Njikang GN, Gauthier M, Li JM (2008) Polymer 49:5474–5481

    Article  CAS  Google Scholar 

  125. Jiwpanich S, Ryu JH, Bickerton S, Thayumanavan S (2010) J Am Chem Soc 132:10683–10685

    Article  CAS  Google Scholar 

  126. Ryu JH, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) J Am Chem Soc 132:17227–17235

    Article  CAS  Google Scholar 

  127. Bickerton S, Jiwpanich S, Thayumanavan S (2012) Mol Pharm 9:3569–3578

    Article  CAS  Google Scholar 

  128. Chen KJ, Chiu YL, Chen YM, Ho YC, Sung HW (2011) Biomaterials 32:2586–2592

    Article  CAS  Google Scholar 

  129. Lu J, Owen SC, Shoichet MS (2011) Macromolecules 44:6002–6008

    Article  CAS  Google Scholar 

  130. Hua P, Tirelli N (2011) React Funct Polym 71:303–314

    Article  CAS  Google Scholar 

  131. McDonald TO, Martin P, Patterson JP, Smith D, Giardiello M, Marcello M, See V, O’Reilly RK, Owen A, Rannard S (2012) Adv Funct Mater 22:2469–2478

    Article  CAS  Google Scholar 

  132. Li YP, Budamagunta MS, Luo JT, Xiao WW, Voss JC, Lam KS (2012) ACS Nano 6:9485–9495

    Article  CAS  Google Scholar 

  133. Li YP, Xiao WW, Xiao K, Berti L, Luo JT, Tseng HP, Fung G, Lam KS (2012) Angew Chem Int Ed 51:2864–2869

    Article  CAS  Google Scholar 

  134. Javali NM, Raj A, Saraf P, Li X, Jasti B (2012) Pharm Res 29:3347–3361

    Article  CAS  Google Scholar 

  135. Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, Mely Y, Vandamme TF (2012) RSC Adv 2:11876–11886

    Article  CAS  Google Scholar 

  136. Morton SW, Zhao X, Quadir MA, Hammond PT (2014) Biomaterials 35:3489–3496

    Article  CAS  Google Scholar 

  137. Lehn J-M (1999) Chem Eur J 5:2455–2463

    Article  CAS  Google Scholar 

  138. Lehn J-M (2000) Chem Eur J 12:2097–2102

    Article  Google Scholar 

  139. Lehn J-M (2007) Chem Soc Rev 36:151–160

    Article  CAS  Google Scholar 

  140. Lehn J-M (2012) Top Curr Chem 322:1–32

    Article  CAS  Google Scholar 

  141. Lehn J-M (2013) Angew Chem Int Ed 52:2836–2850

    Article  CAS  Google Scholar 

  142. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF (2002) Angew Chem Int Ed 41:899–958

    Article  CAS  Google Scholar 

  143. Belowich M, Stoddart JF (2012) Chem Soc Rev 41:2003–2024

    Article  CAS  Google Scholar 

  144. Stoddart JF (2012) Angew Chem Int Ed 51:12902–12903

    Article  CAS  Google Scholar 

  145. Cheeseman JD, Corbett AD, Gleason JL, Kazlauskas RJ (2005) Chem Eur J 11:1708–1716

    Article  CAS  Google Scholar 

  146. Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Chem Rev 106:3652–3711

    Article  CAS  Google Scholar 

  147. Cougnon FBL, Sanders JKM (2012) Acc Chem Res 45:2211–2221

    Article  CAS  Google Scholar 

  148. Ladame S (2008) Org Biomol Chem 6:219–226

    Article  CAS  Google Scholar 

  149. Nicolai T, Colombani O, Chassenieux C (2010) Soft Matter 6:3111–3118

    Article  CAS  Google Scholar 

  150. Selby P (1984) Br Med J 288:1251–1253

    Article  Google Scholar 

  151. Luqmani YA (2005) Med Princ Pract 14:35–48

    Article  Google Scholar 

  152. Baguley BC, Kerr DJ (2002) Anticancer drug development. Academic, San Diego

    Google Scholar 

  153. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Cancers 6:1769–1792

    Article  CAS  Google Scholar 

  154. Miller JN (2005) Analyst 130:265–270

    Article  CAS  Google Scholar 

  155. Son S, Shin E, Kim B-S (2014) Biomacromolecules 15:628–634

    Article  CAS  Google Scholar 

  156. Wang B, Chen K, Yang R, Yang F, Liu J (2014) Carbohydr Polym 103:510–519

    Article  CAS  Google Scholar 

  157. Shen H, Zhou M, Zhang Q, Keller A, Shen Y (2015) Colloid Polym Sci. doi:10.1007/s00396-015-3550-7

    Google Scholar 

  158. Zhao Y, Ikeda T (2009) Smart light-responsive materials: azobenzene-containing polymers and liquid crystals. Wiley, New Jersey

    Book  Google Scholar 

  159. Crano JC, Guglielmetti R (1999) Organic photochromic and thermochromic compounds. Plenum, New York

    Google Scholar 

  160. Horspool WM, Lenci F (2004) Handbook of organic photochemistry and photobiology. CRC, Boca Raton

    Google Scholar 

  161. Leamon CP, Low PS (1991) Proc Natl Acad Sci U S A 88:5572–5576

    Article  CAS  Google Scholar 

  162. Leamon CP (2008) Curr Opin Investig Drugs 9:1277–1286

    CAS  Google Scholar 

  163. Low PS, Kularatne SA (2009) Curr Opin Chem Biol 13:256–262

    Article  CAS  Google Scholar 

  164. Kelemen LE (2006) Int J Cancer 119:243–250

    Article  CAS  Google Scholar 

  165. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Nano Rev 3:18496-1–18469-11

    Article  CAS  Google Scholar 

  166. Crooke ST (2001) Antisense drug technology: principles, strategies, and applications. Marcel Dekker, New York

    Book  Google Scholar 

  167. Xing Q, Li N, Chen D, Sha W, Jiao Y, Qi X, Xu Q, Lu J (2014) J Mater Chem B 2:1182–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. G.-A. is grateful for a Beatriu de Pinós postdoctoral grant from the Generalitat de Catalunya (Spain, 2011 BP-A-00270 and 2011 BP-A2-00016). F. M. R. acknowledges the National Science Foundation (CAREER Award CHE-0237578, CHE-0749840 and CHE-1049860) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaume Garcia-Amorós or Françisco M. Raymo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Amorós, J., Tang, S., Zhang, Y., Thapaliya, E.R., Raymo, F.M. (2016). Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging. In: Sortino, S. (eds) Light-Responsive Nanostructured Systems for Applications in Nanomedicine. Topics in Current Chemistry, vol 370. Springer, Cham. https://doi.org/10.1007/978-3-319-22942-3_2

Download citation

Publish with us

Policies and ethics