Skip to main content

Sensitivity Analysis for Stream Water Quality Management

  • Chapter
Advances in Water Resources Management

Abstract

The sensitivity equations of stream water quality parameters are presented, and their practical applications to stream pollution control scientifically illustrated. Non-tidal streams are classified into: (a) clean or slightly polluted swift non-tidal streams, (b) moderately polluted swift non-tidal streams, (c) heavily polluted swift non-tidal streams, (d) clean or slightly polluted, intermediate non-tidal streams, (e) moderately polluted intermediate non-tidal streams, (f) heavily polluted intermediate non-tidal streams, (g) clean or slightly polluted slow non-tidal streams, (h) moderately polluted slow non-tidal streams, and (i) heavily polluted slow non-tidal streams.

Tidal streams are classified into: (a) clean or slightly polluted tidal streams, (b) moderately polluted tidal streams, and (c) heavily polluted tidal streams. The characteristics and water quality parameter ranges of different types of receiving streams are presented. The significance of water quality sensitivities and dissolved oxygen deficits for water quality management are systematically identified by the author's mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B:

Bottom deposit uptake rate, mg/L-day

C:

Concentration of dissolved oxygen, mg/L

D:

Total dissolved oxygen deficit, mg/L

Do:

Initial concentration of dissolved oxygen deficit, mg/L

DB :

Dissolved oxygen deficit caused by bottom deposit uptake, mg/L

DD :

Dissolved oxygen deficit caused by initial DO deficit, mg/L

DL :

Dissolved oxygen deficit caused by BOD, mg/L

DN :

Dissolved oxygen deficit caused by nitrification, mg/L

Dα :

Dissolved oxygen deficit reduced by photosynthesis reaction, mg/L

E:

Longitudinal dispersion coefficient, km2/day

J1 :

\( \left(\mathrm{U}/2\mathrm{E}\right) + {\left({\mathrm{U}}^2/4{\mathrm{E}}^2 + {\mathrm{K}}_1/\mathrm{E}\right)}^{0.5} \)

J2 :

\( \left(\mathrm{U}/2\mathrm{E}\right)-{\left({\mathrm{U}}^2/4{\mathrm{E}}^2 + {\mathrm{K}}_2/\mathrm{E}\right)}^{0.5} \)

Jn :

\( \left(\mathrm{U}/2\mathrm{E}\right)-{\left({\mathrm{U}}^2/4{\mathrm{E}}^2 + {\mathrm{K}}_{\mathrm{n}}/\mathrm{E}\right)}^{0.5} \)

K:

one of water quality parameters, such as K1, K2, Kn, α, E or B

K1 :

Deoxygenation coefficient (base e), day−1

K2 :

Reaeration coefficient (base e), day−1

Kn :

Nitrification rate coefficient (base e), day−1

Kr :

BOD removal rate constant (base e), day−1

L:

Concentration of remaining carbonaceous biochemical oxygen demand (CBOD), mg/L

Lo :

Initial concentration of remaining CBOD, mg/L

m1 :

\( {\left({\mathrm{U}}^2 + 4{\mathrm{K}}_1\mathrm{E}\right)}^{-0.5} \)

m2 :

\( {\left({\mathrm{U}}^2 + 4{\mathrm{K}}_2\mathrm{E}\right)}^{-0.5} \)

m3 :

\( {\left({\mathrm{U}}^2 + 4{\mathrm{K}}_{\mathrm{n}}\mathrm{E}\right)}^{-0.5} \)

N:

Concentration of ammonia nitrogen, mg/L

NO :

Initial concentration of ammonia nitrogen, mg/L

n1 :

əJ1/əE = −(J1/E + 2 K1m1)

n2 :

əJ2/əE = −(J2/E + 2 K2m2)

nn :

əJn/əE = −(Jn/E + 2 Knmn)

SC,K :

Sensitivity of C to K for non-tidal streams

SC,K, t :

Sensitivity of C to K for tidal streams

SD, B :

Sensitivity of D to B for non-tidal streams, day

SD, K1 :

Sensitivity of D to K1 for non-tidal streams, mg-day/L

SD, K2 :

Sensitivity of D to K2 for non-tidal streams, mg-day/L

SD, Kn :

Sensitivity of D to K2 for non-tidal streams, mg-day/L

SD, α :

Sensitivity of D to α for non-tidal streams, day

SD, B, t :

Sensitivity of D to B for tidal streams, day

SD, E, t :

Sensitivity of D to E for tidal streams, mg-day/L-km2

SD, K1, t :

Sensitivity of D to K1 for tidal streams, mg-day/L

SD, K2, t :

Sensitivity of D to K2 for tidal streams, mg-day/L

SD, Kn, t :

Sensitivity of D to Kn for tidal streams, mg-day/L

SD, α, t :

Sensitivity of D to α for tidal streams, day

SD, K :

Sensitivity of D to K for non-tidal streams, day

SD, K, t :

Sensitivity of D to K for tidal streams

SL, K1 :

Sensitivity of L to K1 for non-tidal streams, mg-day/L

SL, K1, t :

Sensitivity of L to K1 for tidal streams, mg-day/L

SL, E, t :

Sensitivity of L to E for tidal streams

t:

Flow time of pollutant, day

U:

Mean velocity of streams, Km/day

X:

The downstream distance from the point of effluent discharge, km

α:

Photosynthesis rate, mg/L-day

References

  1. Norton, W. R., & Roesner, L. A. (1974). Computer program: Documentation for the stream quality model QUAL-II. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  2. Wen, C. G., Kao, J. F., Wang, L. K., & Wang, M. H. S. (1982). Determination of sensitivity of water quality parameters for stream pollution control. Journal of Environmental Management, 14, 17–34.

    Google Scholar 

  3. Wen, C. G., Kao, J. F., & Wang, L. K. (1980). Mathematical modeling of stream water quality by a new moment method: Theoretical development. Journal of Environmental Management, 10, 1–11.

    Google Scholar 

  4. Wen, C. G., Kao, J. F., & Wang, L. K. (1981). Mathematical modeling of stream water quality by a new moment method: Field investigation of a tidal river. Journal of Environmental Management, 12, 127–140.

    Google Scholar 

  5. Wang, M. H. S., Wang, L. K., Kao, J. F., Wen, C. G., & Vielkind, D. (1979). Computer-aided stream pollution control and management. Part I. Journal of Environmental Management, 9, 165–183.

    Google Scholar 

  6. Wang, L. K., & Elmore, D. C. (1981). Computer-aided modeling of water vapor pressure, gas absorption coefficient and oxygen solubility (Report no. PB82-118787, p. 137). Springfield, VA: US, Department of Commerce, National Technical Information Service.

    Google Scholar 

  7. Wang, L. K., & Elmore, D. C. (1981). Development of a computer plotting program (Report no. PB81-202558, p. 89). Springfield, VA: US, Department of Commerce, National Technical Information Service.

    Google Scholar 

  8. Wang, L. K., Wang, M. H. S., Kao, J. F., & Wen, C. G. (1979). Computer-aided stream pollution control and management. Part II. Journal of Environmental Management, 9, 185–204.

    Google Scholar 

  9. Wen, C. G., & Kao, J. F. (1978). Mathematical models of dissolved oxygen level of Po-Tzu creek. In Proceedings of Aquatic Environment in Pacific Region, Taipei, Taiwan, Republic of China.

    Google Scholar 

  10. Kao, J. F., Wen, C.G., & Cheng, S. S. (1978). Water pollution of Chi-Shui Creek in Taiwan. In International Conference on Water Pollution Control in Developing Countries, Bangkok, Thailand.

    Google Scholar 

  11. National Cheng Kung University. (1979). The assimilative: capacity of Kao-Ping River, Environmental Engineering Department. National Cheng Kung University, Tainan, Taiwan, Republic of China, No. 10.

    Google Scholar 

  12. National Taiwan University. (1978). Water pollution control: planning of Chang-Kang River. National Taiwan University, Taipei, Taiwan, Republic of China.

    Google Scholar 

  13. Taipei Area Sewerage Engineering Department. (1971). Sewerage planning in the greater Taipei area-water pollution survey. Taipei, Taiwan, Republic of China.

    Google Scholar 

  14. Thomann, R. V. (1972). Systems analysis and water quality management. New York: McGraw-Hill.

    Google Scholar 

  15. Wang, L. K., Kao, J. F., Wen, C. G., & Liaw, C. C. (1984). Effect of salinity on reaeration coefficient of receiving waters. Water Science & Technology, 16(5–7), 139.

    Google Scholar 

  16. US EPA. (1985). Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. EPA 600-3-85-040 US Environmental Protection Agency, Washington, DC, June 1985.

    Google Scholar 

  17. James, K., Cant, B., & Ryan, T. (2003). Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Australian Journal of Botany, 51, 703–713.

    Article  CAS  Google Scholar 

  18. US EPA. (1998). Guidelines for ecological risk assessment. EPA-630-R-95-002F, US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  19. Ferenc, S. A., & Foran, J. A. (2000). Multiple stressors ecological risk and impact assessment: Approaches to risk estimation. Pensacola, FL: SETAC Press.

    Google Scholar 

  20. Burgman, M. A. (2005). Environmental risk and recision analysis: For conservation and natural resource management. London: Cambridge University Press.

    Google Scholar 

  21. EPA-Victoria. (2008). An ecological risk assessment of the lower Wimmera River. Environment Protection Authority, Victoria, Australia. www.vict.gov.au Publication 1257, October.

  22. Taylor, L. R. (2013). Ecological sensitivity analysis and aquatic assessment for the proposed poultry abattoir at Funda Mlimi Farms, Mpumalanga. Taylor Environmental CC, White River, South Africa, May 1, 2013.

    Google Scholar 

  23. Kassenaar, D. (2012). Barrie, lovers, and Hewitt Creeks—Ecologically significant ground water recharge area assessment and sensitivity analysis. Toronto, Ontario, Canada: Earth Fx Inc.

    Google Scholar 

  24. Simpson, T. G., Druppel, J. L., Watson, M. C., Benson, B. I., & Mullen, J. D. (2011). Comparing ecological sensitivity with stream flow rates in the Apalachicola—Chattahoochee-flint River basin. Athens, GA: The University of Georgia.

    Google Scholar 

  25. Harper, E. B., Stella, J. C., & Fremier, A. (2011). Global sensitivity analysis for complex ecological models: A case study of riparian cottonwood population dynamics. Ecological Applications, 21(4), 1225–1240.

    Article  Google Scholar 

  26. FAO. (2014). Site selection for aquaculture: Chemical features of water. Fisheries and Aquaculture Department, Washington. www.fao.org.

  27. Ladson, A. R., & White, L. J. (1999). Development and testing of an index of stream condition for waterway management in Australia. Freshwater Biology, 41(2), 453–468.

    Article  Google Scholar 

  28. Wen, C. G., Kao, J. F., Wang, L. K., & Wang, M. H. S. (1983). Sensitivity analysis of ecological design parameters in streams. Civil Engineering for Practicing and Design Engineers, 2(4), 425–446. 2(6), 537–550.

    Google Scholar 

  29. Wen, C. G., Kao, J. F., Wang, L. K., & Liaw, C. C. (1986). Effect of salinity on reaeration coefficient of receiving waters. Civil Engineering for Practicing and Design Engineers, 5(1), 1–18. 5(2), 57–66.

    Google Scholar 

  30. Wen, C. G., Kao, J. F., Liaw, C. C., Wang, M. H. S., & Wang, L. K. (2015). Determination of reaeration coefficient of saline receiving water for water quality management. In L. K. Wang, C. T. Yang, & M. H. S. Wang (Eds.), Advances in water resources management. New York: Springer Science + Business Media.

    Google Scholar 

  31. Wang, M. H. S., & Wang, L. K. (2014). Glossary and conversion factors for water resources engineers. In: L. K. Wang & C. T. Yang (Eds.), Modem water resources engineering. New York: Humana Press.

    Chapter  Google Scholar 

  32. Symons, J. M., Bradley, L. C., Jr., & Cleveland, T. C. (Eds.). (2000). The drinking water dictionary (p. 506). Denver, CO: American Water Works Association.

    Google Scholar 

  33. Wang, L. K. (1974). Environmental engineering glossary (p. 439). Buffalo, NY: Calspan Corporation.

    Google Scholar 

  34. Wang, M. H. S., & Wang, L. K. (2015). Environmental water engineering glossary. In: C. T. Yang & L. K. Wang (Eds.), Advances in water resources engineering. New York: Springer.

    Google Scholar 

  35. Wang, M. H. S., & Wang, L. K. (1986). Water quality control of tidal rivers and estuaries. In: L. K. Wang & N. C. Pereira (Eds.), Water resources and natural control processes (pp. 61–106). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Gung Wen Ph.D., P.E. .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Water Quality Models

For Non-tidal Streams

  1. 1.

    Biochemical Oxygen Demand (L) Model

$$ \mathrm{L}={\mathrm{L}}_{\mathrm{O}}\left[ \exp \left(-{\mathrm{K}}_1\mathrm{t}\right)\right] $$
(8.14)
  1. 2.

    Dissolved Oxygen Deficit (D) Model

$$ \begin{array}{l}\mathrm{D}={\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-1}\left[ \exp \left(-{\mathrm{K}}_1\mathrm{t}\right)\ \hbox{-}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\right]\\ {}+{\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_{\mathrm{n}}\right)}^{-1}\left[ \exp \left(-{\mathrm{K}}_{\mathrm{n}}\mathrm{t}\right)\ \hbox{-}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\right]\\ {}+\left(\mathrm{B}-\alpha \right){\left({\mathrm{K}}_2\right)}^{-1}\left[1\ \hbox{-}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\right]+{\mathrm{D}}_{\mathrm{O}} \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\end{array} $$
(8.15)

For Tidal Streams

  1. 1.

    Biochemical Oxygen Demand (L) Model

$$ \mathrm{L} = {\mathrm{L}}_{\mathrm{O}}\left[ \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)\right] $$
(8.16)
  1. 2.

    Dissolved Oxygen Deficit (D) Model

$$ \begin{array}{l}\mathrm{D}={\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-1}\left[ \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)- \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}+{\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_{\mathrm{n}}\right)}^{-1}\left[ \exp\ \left({\mathrm{J}}_{\mathrm{n}}\mathrm{X}\right)- \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}+\left(\mathrm{B}-\alpha \right)\ {{\mathrm{K}}_2}^{-1}\left[1- \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\ \right]+{\mathrm{D}}_{\mathrm{o}} \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\end{array} $$
(8.17)

Appendix 2: Sensitivity Formulas for Non-tidal Streams

  1. 1.

    The sensitivity of L to K1:

$$ {\mathrm{S}}_{\mathrm{L},\ \mathrm{K}1}=-{\mathrm{L}}_{\mathrm{O}}\mathrm{t}\left[ \exp \left(-{\mathrm{K}}_1\mathrm{t}\right)\right] $$
(8.18)
  1. 2.

    The sensitivity of D to K1:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}1}={\mathrm{K}}_2{\mathrm{L}}_{\mathrm{o}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-2}\left[ \exp \left(-{\mathrm{K}}_1\mathrm{t}\right)- \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\ \right]\\ {}\kern4em -{\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}\mathrm{t}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-1} \exp \left(-{\mathrm{K}}_1\mathrm{t}\right)\end{array} $$
(8.19)
  1. 3.

    The sensitivity of D to Kn:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}\mathrm{n}}={\mathrm{K}}_2{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_{\mathrm{n}}\right)}^{-2}\left[ \exp \left(-{\mathrm{K}}_{\mathrm{n}}\mathrm{t}\right)\ \hbox{-}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\right]\\ {}\kern4em -{\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}\mathrm{t}{\left({\mathrm{K}}_2-{\mathrm{K}}_{\mathrm{n}}\right)}^{-1} \exp \left(-{\mathrm{K}}_{\mathrm{n}}\mathrm{t}\right)\end{array} $$
(8.20)
  1. 4.

    The sensitivities of D to α and B:

$$ {\mathrm{S}}_{\mathrm{D},\ \mathrm{B}}=-{\mathrm{S}}_{\mathrm{D},\alpha }={\left({\mathrm{K}}_2\right)}^{-\mathrm{l}}\left[1\ \hbox{-}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\right] $$
(8.21)
  1. 5.

    The sensitivity of D to K2:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}2} = -{\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{1}}\right)}^{-2}\left[ \exp \Big(-{\mathrm{K}}_1\mathrm{t}\right)\ \hbox{--}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\Big]\\ {}\kern4.25em + {\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}\mathrm{t}{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{1}}\right)}^{-1} \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\\ {}\kern4.2em -{\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{n}}\right)}^{-2}\left[ \exp \Big(-{\mathrm{K}}_{\mathrm{n}}\mathrm{t}\right)\ \hbox{--}\ \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\Big]\\ {}\kern4.3em + {\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}\mathrm{t}{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{n}}\right)}^{-1} \exp \left(-{\mathrm{K}}_2\mathrm{t}\right)\\ {}\kern4.3em + \left(\alpha - \mathrm{B}\right){\left({\mathrm{K}}_2\right)}^{-2}\left[1 - {\mathrm{e}}_{\mathrm{X}}\mathrm{p}\Big(-{\mathrm{K}}_2\mathrm{t}\right)\Big]\\ {}\kern4.3em - \left(\alpha /{\mathrm{K}}_2 - \mathrm{B}/{\mathrm{K}}_2 + {\mathrm{D}}_{\mathrm{O}}\right)\ \mathrm{t}\ \left[ \exp \Big(-{\mathrm{K}}_2\mathrm{t}\right)\Big]\end{array} $$
(8.22)
  1. 6.

    The sensitivity of DO to K:

$$ {\mathrm{S}}_{\mathrm{C},\ \mathrm{K}}=-{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}} $$
(8.23)

Appendix 3: Sensitivity Formulas for Tidal Streams

  1. 1.

    The sensitivity of L to K1:

$$ {\mathrm{S}}_{\mathrm{L},\ \mathrm{K}\mathrm{l},\ \mathrm{t}} = -{\mathrm{L}}_{\mathrm{O}}{\mathrm{m}}_1\mathrm{X}\left[ \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)\right] $$
(8.24)
  1. 2.

    The sensitivity of D to K1:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}\mathrm{l},\ \mathrm{t}}={\mathrm{K}}_2\mathrm{L}\mathrm{o}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-2}\left[ \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)\ \hbox{-}\ \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.5em -{\mathrm{K}}_1{\mathrm{m}}_1{\mathrm{XL}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-1} \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)\end{array} $$
(8.25)
  1. 3.

    The sensitivity of D to Kn:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}\mathrm{n},\ \mathrm{t}}={\mathrm{K}}_2{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-2}\left[ \exp\ \left({\mathrm{J}}_{\mathrm{n}}\mathrm{X}\right)\ \hbox{-}\ \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.5em -{\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}\mathrm{t}{\left({\mathrm{K}}_2-{\mathrm{K}}_{\mathrm{n}}\right)}^{-1} \exp \left(-{\mathrm{K}}_{\mathrm{n}}\mathrm{t}\right)\end{array} $$
(8.26)
  1. 4.

    The sensitivities of D to α and B:

$$ {\mathrm{S}}_{\mathrm{D},\ \mathrm{B},\ \mathrm{t}}=-{\mathrm{S}}_{\mathrm{D},\alpha,\ \mathrm{t}}={\left({\mathrm{K}}_2\right)}^{-1}\left[\mathrm{l}\ \hbox{-}\ \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right] $$
(8.27)
  1. 5.

    The sensitivity of D to E:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{E},\ \mathrm{t}} = {\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}\mathrm{X}{\left({\mathrm{K}}_2 - {\mathrm{K}}_1\right)}^{-1}\left[{\mathrm{n}}_1 \exp\ \left({\mathrm{J}}_1\mathrm{X}\right) - {\mathrm{n}}_2 \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.25em + {\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}\mathrm{X}{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{n}}\right)}^{-1}\left[{\mathrm{n}}_{\mathrm{n}} \exp\ \left({\mathrm{J}}_{\mathrm{n}}\mathrm{X}\right) - {\mathrm{n}}_2 \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.25em + \left(\alpha /{\mathrm{K}}_2 - \mathrm{B}/{\mathrm{K}}_2 + {\mathrm{D}}_{\mathrm{O}}\right){\mathrm{n}}_2\mathrm{X}\left[ \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\end{array} $$
(8.28)
  1. 6.

    The sensitivity of D to K2:

$$ \begin{array}{l}{\mathrm{S}}_{\mathrm{D},\ \mathrm{K}2,\ \mathrm{t}}=-{\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}{\left({\mathrm{K}}_2-{\mathrm{K}}_1\right)}^{-2}\left[ \exp\ \left({\mathrm{J}}_1\mathrm{X}\right)\hbox{--} \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.25em - {\mathrm{K}}_1{\mathrm{L}}_{\mathrm{O}}{\mathrm{Xm}}_2{\left({\mathrm{K}}_2\hbox{--}\ {\mathrm{K}}_1\right)}^{-1} \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\\ {}\kern4.25em - {\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}{\left({\mathrm{K}}_2\hbox{--} {\mathrm{K}}_1\right)}^{-2}\left[ \exp\ \left({\mathrm{J}}_{\mathrm{n}}\mathrm{X}\right)\hbox{--} \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.25em - {\mathrm{K}}_{\mathrm{n}}{\mathrm{N}}_{\mathrm{O}}{\mathrm{Xm}}_2{\left({\mathrm{K}}_2 - {\mathrm{K}}_{\mathrm{n}}\right)}^{-1} \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\\ {}\kern4.25em + \left(\alpha - \mathrm{B}\right){\left({\mathrm{K}}_2\right)}^{-2}\left[1- \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\right]\\ {}\kern4.25em - \left[\left(\alpha - \mathrm{B}\right)\ {\left({\mathrm{K}}_2\right)}^{-1} + {\mathrm{D}}_{\mathrm{O}}\left]{\mathrm{m}}_2\mathrm{X}\right[\ \exp\ \left({\mathrm{J}}_2\mathrm{X}\right)\ \right]\end{array} $$
(8.29)
  1. 7.

    The sensitivity of DO to K:

$$ {\mathrm{S}}_{\mathrm{C},\ \mathrm{K},\ \mathrm{t}}={\mathrm{S}}_{\mathrm{D},\ \mathrm{K},\ \mathrm{t}} $$
(8.30)

Glossary [3135]

Ammonia nitrogen

A common way to report ammonia concentration (expressed as ammonia-nitrogen).

Ammonification

A process of formation of ammonia nitrogen from reduced organic nitrogen compounds.

Biological oxidation

A process by which living organisms in the presence of oxygen convert organic matter into a more stable or a mineral form.

Carbonaceous

Containing carbon and derived from organic substances such as coal, coconut shells, and organic waste.

Denitrification

A biochemical process of conversion of nitrite nitrogen and nitrate nitrogen to molecular nitrogen, nitrogen dioxide, or a mixture of these two gases, under reducing conditions in the absence of free dissolved oxygen.

Deoxygenation

It is a process for depletion of the dissolved oxygen in a liquid either under natural conditions associated with the biochemical oxidation of organic matter present or by addition of chemical reducing agents.

Deposit

Material left in a new position by a transporting agent such as earth quake, gravity, human activity, ice, water current, or wind.

Dissolved gases

The sum of gaseous components, such as oxygen, nitrogen, carbon dioxide, methane, hydrogen sulfide, etc. that are dissolved in water.

Dissolved oxygen (DO)

The concentration of oxygen dissolved in water, which is often expressed in units of mg/L.

Dissolved oxygen deficit (D)

The difference between the dissolved oxygen saturation concentration (Cs) and actual dissolved oxygen concentration at time t (Q) in a receiving water (such as river) at some downstream distance away from the point of waste discharge (D = Cs − C). See dissolved oxygen deficit and dissolved sag curve.

Dissolved oxygen sag curve (DO sage curve)

A stream water quality curve that represents the profile of dissolved oxygen concentration along the course of a stream resulting from deoxygenation associated with biochemical oxidation of organic matter and reoxygenation through the absorption of atmospheric oxygen and biological photosynthesis. Also called oxygen sag curve.

Dissolved oxygen saturation concentration (Cs)

The maximum concentration (mg/L) of dissolved oxygen in water under specific water temperature , pressure and salinity .

Dissolved solids

The constituents in water that can pass through a 0.45-μm pore-diameter filter.

Initial dissolved oxygen deficit (D0)

The difference between the dissolved oxygen saturation concentration (Cs) and actual dissolved oxygen concentration (C) in a receiving water (river or lake) at the point of waste discharge (D0 = Cs −  C). See dissolved oxygen deficit.

NCKU (National Cheng Kung University) equations

They are reaeration coefficient equations developed by National Cheng Kung University, Taiwan, showing the effect of salinity on receiving water’s reaeration coefficient. The NCKU equations are modeled by K2s = K2f exp (0.0127 Chlorinity); K2s = K2f exp (0.0000127 Chloride); and K2s = K2f exp (0.007 Salinity); in which K2s = reaeration coefficient of saline water, day−1; K2f = reaeration coefficient of fresh water, day−1; Chlorinity = chlorinity of receiving water, g/L; Chloride = chloride concentration of receiving water, mg/L; and Salinity = salinity of receiving water, ‰, or ppt, or parts per thousand.

Nitrate nitrogen

A common way to report nitrate concentration (expressed as nitrogen).

Nitrification

A process of formation of nitrate nitrogen from reduced inorganic nitrogen compounds, such as ammonia nitrogen. Nitrification in the natural environment is carried out primarily by autotrophic bacteria.

Nitrite nitrogen

A common way to report nitrite concentration (expressed as nitrogen).

Non-tidal stream/river

A stream/river which water level and flow direction will not fluctuate and will not be affected by the action of lunar and solar forces upon the rotating earth.

Oxygen-sag curve

See dissolved oxygen sag curve.

Photosynthesis

The conversion of light energy to chemical energy. At night, this process reverses: plants and algae suck oxygen out of the water.

Reaeration

(a) The physical chemical reaction by which oxygen is absorbed back into water, (b) An aeration process by which oxygen in air is absorbed back into natural water, such as stream water and lake water, (c) A natural process of oxygen exchange between the atmosphere and a natural water body in contact with the atmosphere. Typically, the net transfer of oxygen is from the atmosphere and into the water, since dissolved oxygen levels in most natural waters are below saturation. When photosynthesis produces supersaturated dissolved oxygen levels, however, the net transfer is back into the atmosphere, (d) Reaeration process is modeled as the product of reaeration coefficient multiplied by the difference between dissolved oxygen saturation and the actual dissolved oxygen concentration, that is: Fc = K2 (Cs − C) = (KL/H) (Cs − C). Here Fc = rate or flux of dissolved oxygen across the water body. M/L3/T; C = dissolved oxygen concentration, M/L3, Cs = saturation dissolved oxygen concentration, M/L3, K2 = reaeration coefficient, 1/T, H = water depth, L, KL = surface transfer coefficient, L/T.

Reaeration coefficient

A mass transfer coefficient (K2) in reaeration process. See reaeration and mass transfer coefficient.

Reaeration rate

(a) The rate at which oxygen is absorbed back into water. This is dependent, among other things, upon turbulence intensity, temperature, and the water depth, (b) The reaeration rate is defined as the rate of dissolved oxygen across the water body Fc = K2 (Cs −  C). Here Fc = rate or flux of dissolved oxygen across the water body, M/L3/T; C = dissolved oxygen concentration, M/L3; Cs = saturation dissolved oxygen concentration, M/L3; K2 = reaeration coefficient, 1/T.

Reaeration rate coefficient

See reaeration coefficient.

Receiving waters

(a) A river , lake, ocean, stream, or other bodies of water into which wastewater or treated effluent is discharged; (b) A distinct water body that receives run off, or wastewater discharges, such as streams, rivers, lakes, estuaries and oceans.

Saline water intrusion

The movement of saline groundwater into a formerly freshwater aquifer as a result of pumping in that aquifer usually near coastal areas where the source of saline water is the nearby ocean.

Sensitivity

(a) In analytical testing, the lowest practical detection level; (b) In microbiological testing, the likelihood that the test result will be positive when the target organism is present, (c) In water resources engineering, the smallest changes of certain physical parameters that will affect hydraulic or hydrological model’s solutions.

Sensitivity analysis

(a) A mathematical analysis of the sensitivity of the dependent variable in a mathematical expression as a function of variations in the value of any independent variables or coefficients associated with the independent variables, (b) A mathematical analysis which determines how much the value of Y is affected by changes in the values of a and b.

Tidal

Pertaining to periodic water level fluctuations due to the action of lunar (moon) and solar (sun) forces upon the rotating Earth.

Tidal current

A water current brought about or caused by tidal forces.

Tidal stream/river

A stream/river which is affected by tidal current and its water level and flow direction fluctuate due to the action of lunar and solar forces upon the rotating Earth.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wen, CG., Kao, JF., Wang, MH.S., Wang, L.K. (2016). Sensitivity Analysis for Stream Water Quality Management. In: Wang, L., Yang, C., Wang, MH. (eds) Advances in Water Resources Management. Handbook of Environmental Engineering, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-22924-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22924-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22923-2

  • Online ISBN: 978-3-319-22924-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics