Skip to main content

Perspectives on Carbon Nanomaterials in Medicine Based upon Physicochemical Properties: Nanotubes, Nanodiamonds, and Carbon Nanobombs

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

There has been an explosion of potential applications for detonation-synthesized diamond nanoparticles, also known as “nanodiamonds,” due to their large-scale production and commercial availability. However, it is the purity, fluorescence, variety of surface modifications, and high biocompatibility that have contributed to their popularity among other carbon nanoparticles for medicinal applications. Indeed, nanodiamonds can maintain most, if not all, of their inherently desirable properties upon surface functionalization (such as fluorescence, biocompatibility, etc.) in contrast to many other forms of carbon or more traditional nanoparticles such as semiconductor quantum dots. However, during the pursuit for novel uses of nanoparticles, it is imperative to independently assess the biocompatibility of nano-sized particles even if materials of similar composition are currently being used in biomedical applications. The goal of this chapter is to review and provide the reader with a current perspective on the unique physicochemical properties of nanodiamonds with reference to novel applications that have emerged over the past decade in both in vitro and in vivo data arenas (i.e., carbon nanobombs for cancer cell destruction). Future considerations for medical use of nanocarbon, including the most important biological life cycle implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Schrand, T. Benson-Tolle, in Chapter 18: Carbon Nanotube and Epoxy Composites for Military Applications, ed. by L. Dai. Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science, and Device Applications, (Elsevier, Amsterdam, 2006)

    Google Scholar 

  2. D.A. Gomez-Gualdrón, J.C. Burgos, J. Yu, P.B. Balbuena, Carbon nanotubes: engineering biomedical applications. Prog. Mol. Biol. Transl. Sci. 104, 175–245 (2011)

    Article  Google Scholar 

  3. S. Prakash, A.G. Kulamarva, Recent advances in drug delivery: potential and limitations of carbon nanotubes. Recent. Pat. Drug. Deliv. Formul. 1(3), 214–221 (2007)

    Article  Google Scholar 

  4. M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41(1), 60–68 (2008)

    Article  Google Scholar 

  5. S.Y. Madani, N. Naderi, O. Dissanayake, A. Tan, A.M. Seifalian, A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomed. 6, 2963–2979 (2011)

    Google Scholar 

  6. S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug. Deliv. Rev. 63(14–15), 1340–1351 (2011)

    Article  Google Scholar 

  7. T. Kurkina, K. Balasubramanian, Towards in vitro molecular diagnostics using nanostructures. Cell. Mol. Life. Sci. 69(3), 373–388 (2012)

    Article  Google Scholar 

  8. F. Liang, B. Chen, A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17(1), 10–24 (2010)

    Article  Google Scholar 

  9. W. Cheung, F. Pontoriero, O. Taratula, A.M. Chen, H. He, DNA and carbon nanotubes as medicine. Adv. Drug. Deliv. Rev. 62(6), 633–649 (2010)

    Article  Google Scholar 

  10. L. Zhu, A.M. Schrand, A.A. Voevodin, D.W. Chang, L. Dai, S.M. Hussain, Assessment of human lung macrophages after exposure to multi-walled carbon nanotubes Part II. DNA Damage Nanosci. Nanotechnol. Lett. 3, 94–98 (2011b)

    Article  Google Scholar 

  11. M. Bottini, N. Rosato, N. Bottini, PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 12(10), 3381–3393 (2011)

    Article  Google Scholar 

  12. A. Tan, L. Yildirimer, J. Rajadas, H. De La Peña, G. Pastorin, A. Seifalian, Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine (Lond) 6(6), 1101–1114 (2011)

    Article  Google Scholar 

  13. C. Iancu, L. Mocan, Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. Int. J. Nanomedicine 6, 1675–1684 (2011)

    Article  Google Scholar 

  14. A.O. Tarakanov, L.B. Goncharova, Y.A. Tarakanov, Carbon nanotubes towards medicinal biochips. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2(1), 1–10 (2010)

    Article  Google Scholar 

  15. K.B. Hartman, L.J. Wilson, Carbon nanostructures as a new high-performance platform for MR molecular imaging. Adv. Exp. Med. Biol. 620, 74–84 (2007)

    Article  Google Scholar 

  16. B.S. Harrison, A. Atala, Carbon nanotube applications for tissue engineering. Biomater. 28(2), 344–353 (2007)

    Article  Google Scholar 

  17. E.B. Malarkey, V. Parpura, Carbon nanotubes in neuroscience. Acta. Neurochir. Suppl. 106, 337–341 (2010)

    Article  Google Scholar 

  18. A. Bianco, K. Kostarelos, M. Prato, Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. (Camb). 47(37), 10182–8 (2011)

    Article  Google Scholar 

  19. C. Buzea, B. Pacheco, I.I., K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR172 (2007)

    Article  Google Scholar 

  20. K. Inoue, H. Takano, R. Yanagisawa, S. Hirano, M. Sakurai, A. Shimada, T. Yoshikawa, Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ. Health. Perspect. 114(9), 1325–1330 (2006)

    Article  Google Scholar 

  21. P. Hoet, A. Nemmar, B. Nemery, M. Hoylaerts, in Hemostatic and thrombotic effects of particulate exposure: Assessing the mechanisms, ed. by N. Monteiro-Riviere, C.L. Tran. Nanotoxicology: Characterization, dosing, and health effects, (Informa Healthcare, Zug, 2007), pp. 247–266

    Google Scholar 

  22. L. Pramatarova, R. Dimitrova, E.P.T. Spassov et al., Peculiarities of hydroxyapatite/nanodiamond composites as novel implants. J. Phys. Conf. Ser. 93, 012049 (2007)

    Article  Google Scholar 

  23. Q. Zhang et al., Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)

    Article  Google Scholar 

  24. R.A. Freitas Jr., Nanomedicine Volume IIA: Biocompatibility. (Landes Bioscience, Georgetown, 2003)

    Google Scholar 

  25. R.H. Hurt, M. Monthioux, A. Kane, Toxicology of carbon nanoparticles: status, trends, and perspectives on the special issue. Carbon 44, 1028–1033 (2006)

    Article  Google Scholar 

  26. L. Dai (ed.), Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications. (Elsevier, Amsterdam, 2006)

    Google Scholar 

  27. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, E. Ōsawa, Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam. Relat. Mater. 16, 2118 (2007a)

    Article  Google Scholar 

  28. L. Zhu, A.M. Schrand, A.A. Voevodin, D.W. Chang, L. Dai, S.M. Hussain, Assessment of human lung macrophages after exposure to multi-walled carbon nanotubes Part I. Cytotoxicity. Nanosci. Nanotechnol. Lett. 3, 88–93 (2011a)

    Article  Google Scholar 

  29. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo, Cytotoxicity of carbon nanoparticles: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378 (2005)

    Article  Google Scholar 

  30. C. Grabinski, S. Hussain, K. Lafdi, L. Braydich-Stolle, J. Schlager, Effect of particle dimension on biocompatibility of carbon nanoparticles. Carbon 45, 2828 (2007)

    Article  Google Scholar 

  31. M.R. Wilson, J.H. Lightbody, K. Donaldson, J. Sales, V. Stone, Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol. 184, 172 (2002)

    Article  Google Scholar 

  32. P.S. Gilmour, A. Ziesenis, E.R. Morrison, M.A. Vickers, E.M. Drost, I. Ford et al., Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol. Appl. Pharmacol. 195, 35 (2004)

    Article  Google Scholar 

  33. R.L. Price, K.M. Haberstoh, T.J. Webster, Improved osteoblast viability in the presence of smaller nanometer dimensioned carbon fibres. Nanotechnology 15, 892 (2004)

    Article  Google Scholar 

  34. Y. Sato, A. Yokoyama, K. Shibata, Y. Akimoto, S. Ogino, Y. Nodasaka, T. Kohgo, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, M. Ishiguro, R. Hatakeyama, F. Watari, K. Tohji, Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1, 176 (2005)

    Article  Google Scholar 

  35. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forro, Cellular toxicity of carbon-based nanoparticles. Nano Lett. 6, 1121 (2006)

    Article  Google Scholar 

  36. C. Liu, H. Huang, P. Song, S. Fan, Machining carbon nanotubes into uniform slices. J. Nanosci. Nanotechnol. 7, 4473 (2007)

    Article  Google Scholar 

  37. K. Liu, C. Cheng, C. Chang et al., Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnol. 18, 325102 (2007)

    Article  Google Scholar 

  38. A.M. Schrand, Characterization and In Vitro Biocompatibility of Engineered Nanomaterials (The School of Engineering, University of Dayton, Dayton, 2007) pp. 93–123

    Google Scholar 

  39. A.M. Schrand, H. Huang, C. Carlson, J.J. Schlager, E. Osawa, S.M. Hussain, L. Dai, Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 111, 2 (2007b)

    Article  Google Scholar 

  40. G. Oberdorster, J.N. Finkelstein, C. Johnston, R. Gelein, C. Cox, R. Baggs, A.C. Elder, Acute pulmonary effects of ultrafine particles in rats and mice. Res. Rep. Health Eff. Inst. 96, 5–74 (2000)

    Google Scholar 

  41. G. Oberdorster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter et al., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre. Toxicol. 2, 8 (2005)

    Article  Google Scholar 

  42. T. Ashikaga, M. Wada, H. Kobayashi, M. Mori, Y. Katsumura, H. Fukui, S. Kato et al., Effect of the photocatalytic activity of TiO(2) on plasmid DNA. Mutat. Res. 466, 1 (2000)

    Article  Google Scholar 

  43. D.M. Brown, V. Stone, P. Findlay, W. Macnee, K. Donaldson, Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med. 57, 685 (2000)

    Article  Google Scholar 

  44. D.M. Brown, M.R. Wilson, W. Macnee, V. Stone, K. Donaldson, Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175, 191 (2001)

    Article  Google Scholar 

  45. D. Hohr, Y. Steinfartz, R.P. Schins, A.M. Knaapen, G. Martra, B. Fubini, P.J. Borm, The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. Int. J. Hyg. Environ. Health. 205, 239 (2002)

    Article  Google Scholar 

  46. B. Rehn, F. Seiler, S. Rehn, J. Bruch, M. Maier, Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol. Appl. Pharmacol. 189, 84 (2003)

    Article  Google Scholar 

  47. A. Hoshino, F. Kujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, K. Yamamoto, Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163 (2004)

    Article  Google Scholar 

  48. M. Muller, S. Mackeben, C.C. Muller-Goymann, Physicochemical characterisation of liposomes with encapsulated local anaesthetics. Int. J. Pharm. 1–2, 139 (2004)

    Article  Google Scholar 

  49. L. Ding, J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J.P. Selegue, P.A. Cooke et al., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 5, 2448 (2005)

    Article  Google Scholar 

  50. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, M.A. Javier, H.E. Gaub, S. Stolzle et al., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331 (2005)

    Article  Google Scholar 

  51. K. Soto, A. Carrasco, T. Powell, K. Garza, L. Murr, Comparative In vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J. Nanopart. Res. 7, 145 (2005)

    Article  Google Scholar 

  52. B.D. Chithrani, A.A. Ghazani, W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662 (2006)

    Article  Google Scholar 

  53. C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore et al., Colvin, functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161, 135 (2006)

    Article  Google Scholar 

  54. H.W. Chen, S.F. Su, C.T. Chien, W.H. Lin, S.L. Yu, C.C. Chou, J.J. Chen, P.C. Yang, Titanium dioxide nanoparticles induceemphysema-like lung injury in mice. FASEB. J. 20, 2393 (2006)

    Article  Google Scholar 

  55. D.B. Warheit, T.R. Webb, C.M. Sayes, V.L. Colvin, K.L. Reed, Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227 (2006)

    Article  Google Scholar 

  56. Z.P. Xu, Q.H. Zeng, G.Q.L. Gq, A.B. Ui, Inorganic, nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61, 1027 (2006)

    Article  Google Scholar 

  57. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712 (2007)

    Article  Google Scholar 

  58. L.N. Daniel, Y. Mao, T.C. Wang, C.J. Markey, S.P. Markey, X. Shi, U. Saffiotti, DNA strand breakage, thymine glycol production, and hydroxyl radical generation induced by different samples of crystalline silica in vitro. Environ. Res. 71, 60 (1995)

    Article  Google Scholar 

  59. J.C. Ball, A.M. Straccia, W.C. Young, A.E. Aust, The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of NIST ambient particulate matter and diesel engine particles. J. Air. Waste. Manag. Assoc. 50, 2000 (1897)

    Google Scholar 

  60. J.F. Long, W.J. Waldman, R. Kristovich, M. Williams, D. Knight, P.K. Dutta, Comparison of ultrastructural cytotoxic effects of carbon and carbon/iron particulates on human monocyte-derived macrophages. Environ. Health. Perspect. 113, 170 (2005)

    Article  Google Scholar 

  61. E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16, 2007 (2018)

    Google Scholar 

  62. V.S. Bondar, A.P. Puzyr, Nanodiamonds for biological investigations. Phys. Solid. State. 46, 716, 2004

    Article  Google Scholar 

  63. R.C. Murdock, L. Braydich-Stolle, A.M. Schrand, J.J. Schlager, S.M. Hussain, Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101(2), 239–253 (2008)

    Article  Google Scholar 

  64. J.E. Skebo, C.M. Grabinski, A.M. Schrand, J.J. Schlager, S.M. Hussain, Assessment of metal nanoparticle agglomeration, uptake, and interaction using a high illuminating system. Int. J. Tox. 26, 135–141 (2007)

    Article  Google Scholar 

  65. A.M. Schrand, K. Szczublewski, J.J. Schlager, L. Dai, S.M. Hussain, Interaction and biocompatibility of multi-walled carbon nanotubes in PC-12 cells. Int. J. Neuroprot. Neurogener. 3(2), 115–121 (2007c)

    Google Scholar 

  66. A.M. Schrand, J. Johnson, L. Dai, S.M. Hussain, J.J. Schlager, L. Zhu, Y. Hong, E. Osawa, in Chapter 8: Cytotoxicity and Genotoxicity of Carbon Nanomaterials, ed. by Prof. T. Webster. Safety of Nanoparticles: From Manufacturing to Clinical Applications, (Brown University, Springer, Berlin, 2009b)

    Google Scholar 

  67. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain in Chapter 5: Toxicity Testing of Nanomaterials, ed. by N. Bhoghal. ‘New Technologies for Toxicity Testing’, (Landes Bioscience, Austin, 2012c)

    Google Scholar 

  68. A.M. Schrand, M.F. Rahman, S.M. Hussain, J. Schlager, D.A. Smith, S.F. Ali, Metallic nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. (WIREs) Nanomed. Nanobiotechnol. 2(5), 544–568 (2010c)

    Article  Google Scholar 

  69. A.M. Schrand, T. Powell, T. Sollmann, S.M. Husain, Assessment of carbon- and metal-based nanoparticle DNA damage with microfluidic electrophoretic separation technology. J. Nanosci. Nanotechnol. 15, 1053–1059 (2015)

    Article  Google Scholar 

  70. A.M. Schrand, S.A. Ciftan Hens, O.A. Shenderova, in Chapter 26: Nanodiamond Particles: Properties and Perspectives for Bioapplications, Handbook of Nanoscience, Engineering, and Technology,ed. by W.A. Goddard, III, D.W. Brenner, S.E. Lyshecski, G.J. Lafrate 3rd edn. (Taylor and Francis, LLC, 2012d)

    Google Scholar 

  71. A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid. State. Mater. Sci. 34, 45–54 (2009a)

    Article  Google Scholar 

  72. A.M. Schrand, J.B. Lin, Chapter 16: Characterization of Detonation Nanodiamonds Biocompatibility, 2nd edn, ed. by O. Shenderova, D. Gruen Ultrananocrystalline Diamond (2012a)

    Google Scholar 

  73. S.M. Hussain, L.K. Braydich-Stolle, A.M. Schrand, R.C. Murdock, K.O. Yu, D.M. Mattie, J.J. Schlager, M. Terrones Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv. Mat. 21, 1–11 (2009)

    Article  Google Scholar 

  74. Y.R. Chang, H.Y. Lee, K. Chen et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008)

    Article  Google Scholar 

  75. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)

    Article  Google Scholar 

  76. D. Ho, Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. ACS. Nano 3(12), 3825–3829 (2009)

    Article  Google Scholar 

  77. Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009)

    Article  Google Scholar 

  78. J.I. Chao, E. Perevedentseva, P.H. Chung et al., Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007)

    Article  Google Scholar 

  79. I.P. Chang, K.C. Hwang, C.S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Am. Chem. Soc. 130, 15476–15481 (2008)

    Article  Google Scholar 

  80. A.M. Schrand, J.J. Schlager, L. Dai, S.M. Hussain, Preparing cells dosed with nanomaterials for assessment of internalization and localization with transmission electron microscopy. Nat. Protoc. 5, 744–757 (2010a)

    Article  Google Scholar 

  81. A.M. Schrand, J.B. Lin, S. Ciftan Hens, S.M. Hussain, Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3, 435–445 (2010b)

    Article  Google Scholar 

  82. A.M. Schrand, L. Dai, J.J. Schlager, S.M. Hussain, in Chapter 5: Toxicity Testing of Nanomaterials, ed. by N. Bhoghal. New Technologies for Toxicity Testing (Landes Bioscience, Austin, 2012b)

    Google Scholar 

  83. A.M. Schrand, J. Johnson, L. Dai, S.M. Hussain, J.J. Schlager, L. Zhu, Y. Hong, E. Ōsawa, in Cytotoxicity and genotoxicity of carbon nanoparticles, ed. by T. Webster. Safety of Nanoparticles: From Manufacturing to Clinical Applications (Springer Publishing, Brown University, New York, 2008)

    Google Scholar 

  84. Y. Xing, W. Xiong, L. Zhu et al., DNA damage in embryonic stem cells caused by nanodiamonds. ACS. Nano 5, 2376–2384 (2011)

    Article  Google Scholar 

  85. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604 (2005)

    Article  Google Scholar 

  86. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007)

    Article  Google Scholar 

  87. C.M. Sayes, F. Liang, J.L. Hudson, J. Mendez, W. Guo, J.M. Beach, V.C. Moore, C.D. Doyle, J.L. West, W.E. Billups, K.D. Ausman, V.L. Colvin, Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161, 135 (2006)

    Article  Google Scholar 

  88. M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin, Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160, 121 (2006)

    Article  Google Scholar 

  89. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forro, Cellular toxicity of carbon-based nanoparticles. Nano Lett. 6, 1121 (2006)

    Article  Google Scholar 

  90. A. Krueger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43, 2005 (1722)

    Google Scholar 

  91. E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16, 2007 (2018)

    Google Scholar 

  92. H.J. Huang, L.M. Dai, D.H. Wang, L.S. Tan, E. Osawa, Large-scale self-assembly of dispersed nanodiamonds. J. Mater. Chem. 18, 1347 (2008)

    Article  Google Scholar 

  93. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS. Appl. Mater. Interfaces 2, 3289–3294 (2010)

    Article  Google Scholar 

  94. J.C. Carrero-Sanchez, A.L. Elias, R. Mancilla, G. Arrellin, H. Terrones, J.P. Laclette, M. Terrones, Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609 (2006)

    Article  Google Scholar 

  95. S.K. Manna, S. Sarkar, J. Barr, K. Wise, E.V. Barrera, O. Jejelowo, A.C. Rice-Ficht, G.T. Ramesh, Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5, 1676 (2005)

    Article  Google Scholar 

  96. E. Oberdörster, S. Zhu, T. Blickley, P. Mcclellan-Green, M. Haasch, Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44, 1112 (2006)

    Article  Google Scholar 

  97. S. Vial, C. Mansuy, S. Sagan, T. Irinopoulou, F. Burlina, J.P. Boudou, G. Chassaing, S. Lavielle, Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake. Chembiochem. 9(13), 2113–2119 (2008)

    Article  Google Scholar 

  98. R. Silbajoris, J.M. Huang, W.-Y. Cheng, L. Dailey, T.L. Tal, I. Jaspers, A.J. Ghio, P.A. Bromberg, J.M. Samet, Nanodiamond particles induce Il-8 expression through a transcript stabilization mechanism in human airway epithelial cells. Nanotoxicology 3, 152–160 (2009)

    Article  Google Scholar 

  99. V. Vaijayanthimala, Y.-K. Tzeng, H.-C. Chang, C.-L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20, 425103 (9pp) (2009)

    Article  Google Scholar 

  100. C.C. Fu, H.Y. Lee, K. Chen, T.S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei, P.H. Tsao, H.C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U S A 104, 727 (2007)

    Article  Google Scholar 

  101. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.P. Boudou, A. Krueger, J. Wrachtrup, Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 2588 (2007)

    Article  Google Scholar 

  102. C.-Y. Fang, V. Vaijayanthimala, C.-A. Cheng, S.-H. Yeh, C.-F. Chang, C.-L. Li, H.-C. Chang, The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7(23), 3363–3370 (2011)

    Article  Google Scholar 

  103. K.K. Liu, C.C. Wang, C.L. Cheng et al., Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30, 4249–4259 (2009)

    Article  Google Scholar 

  104. A.V. Karpukhin, N.V. Avkhacheva, R.Y. Yakovlev, I.I. Kulakova, V.A. Yashin, G.V. Lisichkin, V.G. Safronova, Effect of detonation nanodiamonds on phagocyte activity. Cell. Biol. Int. 35(7), 727–733 (2011)

    Article  Google Scholar 

  105. O.A. Shenderova, S. Suzanne Hens, I.I. Vlasov, S. Turner, Y.-G. Lu, G. Van Tendeloo, A. Schrand, S.A. Burikov, T.A. Dolenko, Carbon Dot–Decorated Nanodiamonds. Part. Part. Syst. Charact. 31, 580–590 (2014)

    Article  Google Scholar 

  106. L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007)

    Article  Google Scholar 

  107. C.W. Lam, J.T. James, R. Mccluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126 (2004)

    Article  Google Scholar 

  108. D.B. Warheit, B.R. Laurence, K.L. Reed, D.H. Roach, G.A. Reynolds, T.R. Webb, Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117 (2004)

    Article  Google Scholar 

  109. A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castranova, P. Baron, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289, L698 (2005)

    Article  Google Scholar 

  110. J.C. Carrero-Sanchez, A.L. Elias, R. Mancilla, G. Arrellin, H. Terrones, J.P. Laclette, M. Terrones, Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6, 1609 (2006)

    Article  Google Scholar 

  111. J. Muller, F. Huaux, N. Moreau, P. Misson, J.F. Heilier, M. Delos, M. Arras, A. Fonseca, J.B. Nagy, D. Lison, Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221 (2005)

    Article  Google Scholar 

  112. K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, A. Alexander, Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5 (2006)

    Article  Google Scholar 

  113. T.K. Leeuw, R.M. Reith, R.A. Simonette, M.E. Harden, P. Cherukuri, D.A. Tsyboulski, K.M. Beckingham, R.B. Weisman, Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 7, 2650 (2007)

    Article  Google Scholar 

  114. E. Oberdörster, S. Zhu, T. Blickley, P. Mcclellan-Green, M. Haasch, Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44, 1112 (2006)

    Article  Google Scholar 

  115. T. Tsuchiya, I. Oguri, Y.N. Yamakoshi, N. Miyata, Novel harmful effects of [60] fullerene on mouse embryos in vitro and in vivo. FEBS. Lett. 393, 139 (1996)

    Article  Google Scholar 

  116. T.H. Ueng, J.J. Kang, H.W. Wang, Y.W. Cheng, L.Y. Chiang, Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60. Toxicol. Lett. 93, 29 (1997)

    Article  Google Scholar 

  117. C.Y. Usenko, S.L. Harper, R.L. Tanguay, In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N Y. 45, 2007 (1891)

    Google Scholar 

  118. G.L. Baker, A. Gupta, M.L. Clark, B.R. Valenzuela, L.M. Staska, S.J. Harbo, J.T. Pierce, J.A. Dill, Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci. 101, 122 (2008)

    Article  Google Scholar 

  119. A.A. Tykhomyrov, V.S. Nedzvetsky, V.K. Klochkov, G.V. Andrievsky, Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158 (2008)

    Article  Google Scholar 

  120. A. Baun, N.B. Hartmann, K. Grieger, K.O. Kusk, Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17, 387 (2008)

    Article  Google Scholar 

  121. P. Aspenberg, A. Anttila, Y.T. Konttinen, R. Lappalainen, S.B. Goodman, L. Nordsletten, S. Santavirta, Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials 17, 807 (1996)

    Article  Google Scholar 

  122. R.L. Tse, P. Phelps, Polymorphonuclear leukocyte motility in vitro. V. Release of chemotactic activity following phagocytosis of calcium pyrophosphate crystals, diamond dust, and urate crystals. J. Lab. Clin. Med. 76, 403 (1970)

    Google Scholar 

  123. M. Doherty, J.T. Whicher, P.A. Dieppe, Activation of the alternative pathway of complement by monosodium urate monohydrate crystals and other inflammatory particles. Ann. Rheum. Dis. 42, 285 (1983)

    Article  Google Scholar 

  124. V.Y. Dolmatov, in Application of Detonation Nanodiamond in Ultra Nanocrystalline Diamond: Synthesis, Properties, and Applications, ed. by O.A. Shenderova, D.M. Gruen (William Andrew Publishing, Norwich, 2006), p. 513

    Google Scholar 

  125. A.P. Puzyr, V.S. Bondar, S.E. Al, Dynamics of the selected physiological responses in laboratory mice under the prolonged oral administration of nanodiamonds suspensions Siberian Med Obozrenie. Sib. Med. Rev. (in Russian) 4, 19, 2004a

    Google Scholar 

  126. A.P. Puzyr, V.S. Bondar, Z.Y. Selimhanova, A.G. Tyan, E.V. Bortnikov, E.V. Injevatkin, Results of studies of possible applications of detonation nanodiamonds as enterosorbents Siberian Med Obozrenie. Sib. Med. Rev (in Russian) 2–3, 25, 2004b

    Google Scholar 

  127. V. Bondar, D. Baron, Al. Et, Changes in bio-chemical parameters of blood plasma at administration of nanodiamond to laboratory animals. Bull. Sib. Med. (in Russian) 4, 182 (2005)

    Google Scholar 

  128. A.P. Puzyr, V.S. Bondar, Z.Y. Selimkhanova, A.G. Tyan, E.V. Inzhevatkin, E.V. Bortnikov, Results of in vitro and in vivo studies using detonation nanodiamonds/complex systems under extreme conditions. KSC SB RAS Krasnoyarsk 229, (2005a), p. 229

    Google Scholar 

  129. A.P. Puzyr, V.S. Bondar, A.G. Selimkhanova, E.V. Tyan, Inzhevatkin, V.S. Bondar, D. Baron, Physiological parameters of laboratory animals at oral administration of nanodiamond hydrosols. Bull. Sib. Med. (in Russian) 4, 185 (2005b)

    Google Scholar 

  130. A.P. Puzyr, E.V. Bortnikov, N.N. Skobelev, A.G. Tyan, Z. Yu, G.G. Selimkhanova, G.G. Manashev, V.S. Bondar, A possibility of using of intravenous administration of sterile colloids of modified nanodiamonds. Sib. Med. Obozr./Sib. Med. Rev. (in Russian) 1, 20 (2005c)

    Google Scholar 

  131. V.Y. Dolmatov, L.N. Kostrova, Detonation-synthesized nanodiamonds and the feasibility of developing a new generation of medicinals, Superhard Materials (in Russian), 3(82) (2000)

    Google Scholar 

  132. X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang, Z. Zhu Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol. Lett. 198(2), 237–243 (2010)

    Article  Google Scholar 

  133. Y. Yuan, X. Wang, G. Jia et al., Pulmonary toxicity and translocation of nanodiamond in mice. Diam. Relat. Mater. 19, 291–299 (2010)

    Article  Google Scholar 

  134. S. Rojas, J.D. Gispert, R. Martin et al., Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS. Nano 5, 5552–5559 (2011)

    Article  Google Scholar 

  135. L. Marcon, F. Riquet, D. Vicogne, S. Szunerits, J.-F. Bodart, R. Boukherroub Cellular and in vivo toxicity of functionalized nanodiamond in xenopus embryos. J. Mater. Chem. 20, 8064–8069 (2010)

    Article  Google Scholar 

  136. N. Mohan, C.S. Chen, H.H. Hsieh, Y.C. Wu, H.C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010)

    Article  Google Scholar 

  137. A.M. Schrand, B.M. Stacy, S. Payne, L. Dosser, S.M. Hussain, Fundamental examination of nanoparticle heating kinetics upon near infrared (NIR) irradiation. ACS. Appl. Mater. Interfaces 3, 3971–3980 (2011)

    Article  Google Scholar 

  138. A.M. Schrand, M. Fan, B.M. Stacy, J. Speltz, S. Payne, L. Dosser, S.M. Hussain, Surface modification of gold-carbon nanotube nanohybrids under the influence of near infrared laser exposure. JVST. B. 30(3), D119 (2012e)

    Google Scholar 

  139. V. Pelletier, S. Bhattacharyya, I. Knoke, F. Forohar, M. Bichay, & Y. Gogotsi, Copper azide confined inside templated carbon nanotubes. Adv. Funct. Mat. 20, 3168–3174 (2010)

    Article  Google Scholar 

  140. B. Panchapakesan, S. Lu, K. Sivakumar, K. Taker, G. Cesarone, E. Wickstrom, Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. Nanobiotechnology 1(2), 133–139 (2005)

    Article  Google Scholar 

  141. B. Kang, D. Yu, Y. Dai, S. Chang, D. Chen, Y. Ding, Cancer-Cell targeting and photoacoustic therapy using carbon nanotubes as “Bomb” agents. Small 5, 1292–1301 (2009)

    Article  Google Scholar 

  142. A.A. Bhirde, S. Patel, A.A. Sousa, V. Patel, A.A. Molinolo, Y. Ji, R.D. Leapman, J.S. Gutkind, J.F. Rusling, Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine 5(10), 1535–1546 (2010)

    Article  Google Scholar 

  143. A. Badakhshan, S. Danczyk, Photo-ignition of liquid fuel spray and solid fuel by carbon nanotubes. TMS 2012 functional and structural nanomaterials: fabrication, properties, applications and implications

    Google Scholar 

  144. B. Chehroudi, Distributed Ignition Using Single-Walled Carbon Nanotubes (SWCNTs) with applications in aerospace and future automotive engines. Recent. Pat. Space Technol. 210 (67), 67–75 (2010)

    Google Scholar 

  145. J.S. Tu, E. Perevedentseva, P.H. Chung, C.L. Cheng, Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 125, 174713 (2006)

    Article  Google Scholar 

  146. N.A. Monteiro-Riviere, A.O. Inman, B.M. Barlow, R.E. Baynes, Dermatotoxicity of cutting fluid mixtures: in vitro and in vivo studies. Cutan. Ocul. Toxicol. 25, 235 (2006)

    Article  Google Scholar 

  147. J.M. Worle-Knirsch, K. Pulskamp, H.F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261 (2006)

    Article  Google Scholar 

  148. Y. Zhu, J. Li, W. Li, Y. Zhang, X. Yang, N. Chen, Y. Sun, Y. Zhao, C. Fan, Q. Huang, The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2(3), 302–3112 (2012)

    Article  Google Scholar 

  149. H. Maxwell, The Poisoner’s Handbook (Loompanics Unlimited, Port Townsend, 1988)

    Google Scholar 

  150. G. Davies, Diamond (Adam Hilger Ltd., Bristol, 1984)

    Google Scholar 

  151. L.C. Huang, H.C. Chang, Adsorption and immobilization of Cytochrome c on nanodiamonds. Langmuir 20, 5879 (2004)

    Article  Google Scholar 

  152. T.S. Huang, Y. Tzeng, Y.K. Liu, Y.K. Chen, K.R. Walker, R. Guntupalli, C. Liu, Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098 (2004)

    Article  Google Scholar 

  153. M. Ricarda-Lorenz, V. Holzapfel, A. Musyanovych, K. Nothelfer, P. Walther, H. Frank, K. Landfester, H. Schrezenmeier, V. Mailander, Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterial 27, 2820 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. Schrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schrand, A. (2016). Perspectives on Carbon Nanomaterials in Medicine Based upon Physicochemical Properties: Nanotubes, Nanodiamonds, and Carbon Nanobombs. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_1

Download citation

Publish with us

Policies and ethics