Skip to main content

Analyzing the Strength of Co-authorship Ties with Neighborhood Overlap

  • Conference paper
  • First Online:
Database and Expert Systems Applications (Globe 2015, DEXA 2015)

Abstract

Evaluating researchers’ scientific productivity usually relies on bibliometry only, which may not be always fair. Here, we take a step forward on analyzing such data by exploring the strength of co-authorship ties in social networks. Specifically, we build co-authorship social networks by extracting the datasets of three research areas (sociology, medicine and computer science) from a real digital library and analyze how topological properties relate to the strength of ties. Our results show that different topological properties explain variations in the strength of co-authorship ties, depending on the research area. Also, we show that neighborhood overlap can be applied to scientific productivity evaluation and analysis beyond bibliometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Datasets available at http://www.dcc.ufmg.br/~mirella/Tools/DEXA2015/.

  2. 2.

    Lattes: http://lattes.cnpq.br.

  3. 3.

    ECDF assigns a probability of 1 / n to each value of neighborhood overlap and edge weight, sorts the data in increasing order, and calculates the sum of the assigned probabilities up to and including each value.

References

  1. Acedo, F.J., Barroso, C., Casanueva, B., Galán, J.L.: Co-authorship in management and organizational studies: an empirical and network analysis. J. Manag. Stud. 43(5), 957–983 (2006)

    Article  Google Scholar 

  2. Akoglu, L., Dalvi, B.: Structure, tie persistence and event detection in large phone and sms networks. In: Proceedings of MLG, pp. 10–17 (2010)

    Google Scholar 

  3. Barabasi, A.L., Jeong, H., Néda, Z., Ravasz, E., Shubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A: Stat. Mech. Appl. 311(3), 590–614 (2001)

    Google Scholar 

  4. BrandĂŁo, M.A., Moro, M.M., Lopes, G.R., Oliveira, J.P.M.: Using link semantics to recommend collaborations in academic social networks. In: Proceedings of WWW (2013)

    Google Scholar 

  5. Burt, R.S.: Structural holes and good ideas. Am. J. Sociol. 110(2), 349–399 (2004)

    Article  MATH  Google Scholar 

  6. Cavero, J.M., Vela, B., Cáceres, P.: Computer science research: more production, less productivity. Scientometrics 98(3), 2103–2111 (2014)

    Article  Google Scholar 

  7. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale (1988)

    MATH  Google Scholar 

  8. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Glänzel, W., Schubert, A.: Analysing scientific networks through co-authorship. In: Moed, H.F., Glänzel, W., Schmoch, U. (eds.) Handbook of Quantitative Science and Technology Research, pp. 257–276. Springer, The Netherlands (2005)

    Chapter  Google Scholar 

  10. Gonçalves, G.D., Figueiredo, F., Almeida, J.M., Gonçalves, M.A.: Characterizing scholar popularity: a case study in the computer science research community. In: Proceedings of JCDL (2014)

    Google Scholar 

  11. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  12. Huang, T.H., Huang, M.L.: Analysis and visualization of co-authorship networks for understanding academic collaboration and knowledge domain of individual researchers. In: Proceedings of CGIV, pp. 18–23 (2006)

    Google Scholar 

  13. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York (1991)

    MATH  Google Scholar 

  14. Klink, S., Reuther, P., Weber, A., Walter, B., Ley, M.: Analysing social networks within bibliographical data. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 234–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Li, K., et al.: Efficient algorithm based on neighborhood overlap for community identification in complex networks. Physica A: Stat. Mech. Appl. 391(4), 1788–1796 (2012)

    Article  Google Scholar 

  16. Lima, H., Silva, T.H.P., Moro, M.M., Santos, R.L.T., Meira Jr., W., Laender, A.H.F.: Aggregating productivity indices for ranking researchers across multiple areas. In: Proceedings of JCDL (2013)

    Google Scholar 

  17. Lopes, G.R., Moro, M.M., Silva, R., Barbosa, E.M., Oliveira, J.P.M.: Ranking strategy for graduate programs evaluation. In: Proceedings of ICITA (2011)

    Google Scholar 

  18. Lopes, G.R., Moro, M.M., Wives, L.K., de Oliveira, J.P.M.: Collaboration recommendation on academic social networks. In: Trujillo, J., et al. (eds.) ER 2010. LNCS, vol. 6413, pp. 190–199. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Newman, M.E.J.: The structure of scientific collaboration networks. In: Proceedings of NAS (2001)

    Google Scholar 

  20. Pendlebury, D.A.: The use and misuse of journal metrics and other citation indicators. Arch. Immunol. Ther. Exp. 57(1), 1–11 (2009)

    Article  Google Scholar 

  21. Rana, J., et al.: The strength of social strength: an evaluation study of algorithmic versus user-defined ranking. In: Proceedings of ACM SAC (2014)

    Google Scholar 

  22. Silva, T.H.P., et al.: Community-based endogamy as an influence indicator. In: Proceedings of JCDL (2014)

    Google Scholar 

  23. Simon, R.J.: The work habits of eminent scholars. Work Occupations 1(3), 327–335 (1974)

    Article  Google Scholar 

  24. Wang, P., Zhao, J., Huang, K., Xu, B.: A unified semi-supervised framework for author disambiguation in academic social network. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 1–16. Springer, Heidelberg (2014)

    Google Scholar 

  25. Yan, R., et al.: To better stand on the shoulder of giants. In: Proceedings of JCDL (2012)

    Google Scholar 

  26. Zaki, M.J., Meira Jr., W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES, CNPq and Fapemig - Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirella M. Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

BrandĂŁo, M.A., Moro, M.M. (2015). Analyzing the Strength of Co-authorship Ties with Neighborhood Overlap. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds) Database and Expert Systems Applications. Globe DEXA 2015 2015. Lecture Notes in Computer Science(), vol 9261. Springer, Cham. https://doi.org/10.1007/978-3-319-22849-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22849-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22848-8

  • Online ISBN: 978-3-319-22849-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics