Skip to main content

The Dual Role of Serpins and Tissue-Type Plasminogen Activator During Stroke

  • Chapter
The Serpin Family

Abstract

Serpins are well-known inhibitors of plasminogen activators, key components of fibrinolysis. Within the last decades, tissue-type plasminogen activator (tPA) became more than a fibrinolytic agent and has been demonstrated to be a neuromodulator with physiological and pathological roles within the brain. Indeed, tPA is involved in brain plasticity, learning and memory and development. But in a stroke context, tPA contributes to the increase of intraneuronal calcium, by interacting with the GluN1 subunit of the NMDA receptor, leading to an increase in excitotoxicity. It also promotes blood-brain barrier leakage and inflammation, but in certain conditions tPA can also exert beneficial effects in stroke.

These complex effects of the protease can be inhibited by several serpins, such as neuroserpin, plasminogen activator inhibitor (PAI)-1 and protease nexin (PN)-1. In this chapter, we will focus on the differential effects of the plasminogen activator tPA and make an overview of the literature about serpins’ effects on the cerebral roles of tPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Fanne R, Nassar T, Yarovoi S, Rayan A, Lamensdorf I, Karakoveski M, Vadim P, Jammal M, Cines DB, Higazi AA (2010) Blood-brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 58(7):972–980. doi:10.1016/j.neuropharm.2009.12.017

    CAS  PubMed  Google Scholar 

  • Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 115(20):e478–e534. doi:10.1161/CIRCULATIONAHA.107.181486

    PubMed  Google Scholar 

  • Badiola N, Penas C, Minano-Molina A, Barneda-Zahonero B, Fado R, Sanchez-Opazo G, Comella JX, Sabria J, Zhu C, Blomgren K, Casas C, Rodriguez-Alvarez J (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2, e149. doi:10.1038/cddis.2011.31

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balsara RD, Ploplis VA (2008) Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 100(6):1029–1036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21(4):813–825

    CAS  PubMed  Google Scholar 

  • Benavides A, Pastor D, Santos P, Tranque P, Calvo S (2005) CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia 52(4):261–275. doi:10.1002/glia.20242

    PubMed  Google Scholar 

  • Benchenane K, Lopez-Atalaya JP, Fernandez-Monreal M, Touzani O, Vivien D (2004) Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends Neurosci 27(3):155–160. doi:10.1016/j.tins.2003.12.011

    CAS  PubMed  Google Scholar 

  • Benchenane K, Berezowski V, Ali C, Fernandez-Monreal M, Lopez-Atalaya JP, Brillault J, Chuquet J, Nouvelot A, MacKenzie ET, Bu G, Cecchelli R, Touzani O, Vivien D (2005a) Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation 111(17):2241–2249. doi:10.1161/01.CIR.0000163542.48611.A2

    CAS  PubMed  Google Scholar 

  • Benchenane K, Berezowski V, Fernandez-Monreal M, Brillault J, Valable S, Dehouck MP, Cecchelli R, Vivien D, Touzani O, Ali C (2005b) Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-dependent to an increased LRP-independent process. Stroke 36(5):1065–1070. doi:10.1161/01.STR.0000163050.39122.4f

    PubMed  Google Scholar 

  • Bentley P, Peck G, Smeeth L, Whittaker J, Sharma P (2010) Causal relationship of susceptibility genes to ischemic stroke: comparison to ischemic heart disease and biochemical determinants. PLoS One 5(2), e9136. doi:10.1371/journal.pone.0009136

    PubMed Central  PubMed  Google Scholar 

  • Biessen EA, van Teijlingen M, Vietsch H, Barrett-Bergshoeff MM, Bijsterbosch MK, Rijken DC, van Berkel TJ, Kuiper J (1997) Antagonists of the mannose receptor and the LDL receptor-related protein dramatically delay the clearance of tissue plasminogen activator. Circulation 95(1):46–52

    CAS  PubMed  Google Scholar 

  • Boulaftali Y, Adam F, Venisse L, Ollivier V, Richard B, Taieb S, Monard D, Favier R, Alessi MC, Bryckaert M, Arocas V, Jandrot-Perrus M, Bouton MC (2010) Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 115(1):97–106. doi:10.1182/blood-2009-04-217240

    CAS  PubMed  Google Scholar 

  • Boulaftali Y, Ho-Tin-Noe B, Pena A, Loyau S, Venisse L, Francois D, Richard B, Arocas V, Collet JP, Jandrot-Perrus M, Bouton MC (2011) Platelet protease nexin-1, a serpin that strongly influences fibrinolysis and thrombolysis. Circulation 123(12):1326–1334. doi:10.1161/CIRCULATIONAHA.110.000885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouton MC, Boulaftali Y, Richard B, Arocas V, Michel JB, Jandrot-Perrus M (2012) Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology. Blood 119(11):2452–2457. doi:10.1182/blood-2011-10-387464

    CAS  PubMed  Google Scholar 

  • Briasoulis A, Tousoulis D, Papageorgiou N, Kampoli AM, Androulakis E, Antoniades C, Tsiamis E, Latsios G, Stefanadis C (2012) Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease. Curr Top Med Chem 12(10):1214–1221

    CAS  PubMed  Google Scholar 

  • Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151(6):1163–1167. doi:10.1016/j.cell.2012.11.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–e339. doi:10.1161/STROKEAHA.108.531632

    PubMed  Google Scholar 

  • Brouns R, Heylen E, Sheorajpanday R, Willemse JL, Kunnen J, De Surgeloose D, Hendriks DF, De Deyn PP (2009) Carboxypeptidase U (TAFIa) decreases the efficacy of thrombolytic therapy in ischemic stroke patients. Clin Neurol Neurosurg 111(2):165–170. doi:10.1016/j.clineuro.2008.09.002

    PubMed  Google Scholar 

  • Cinelli P, Madani R, Tsuzuki N, Vallet P, Arras M, Zhao CN, Osterwalder T, Rulicke T, Sonderegger P (2001) Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci 18(5):443–457. doi:10.1006/mcne.2001.1028

    CAS  PubMed  Google Scholar 

  • Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78(12):3114–3124

    CAS  PubMed  Google Scholar 

  • Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, Hernangomez M, Montagne A, Liot G, Guaza C, Maubert E, Ali C, Vivien D, Docagne F (2011) Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med 208(6):1229–1242. doi:10.1084/jem.20101880

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coughlin SR (2001) Protease-activated receptors in vascular biology. Thromb Haemost 86(1):298–307

    CAS  PubMed  Google Scholar 

  • Cuadrado E, Rosell A, Penalba A, Slevin M, Alvarez-Sabin J, Ortega-Aznar A, Montaner J (2009) Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study. J Proteome Res 8(6):3191–3197. doi:10.1021/pr801012x

    CAS  PubMed  Google Scholar 

  • de Paula Sabino A, Ribeiro DD, Domingueti CP, Dos Santos MS, Gadelha T, Dusse LM, das Gracas Carvalho M, Fernandes AP (2011) Plasminogen activator inhibitor-1 4G/5G promoter polymorphism and PAI-1 plasma levels in young patients with ischemic stroke. Mol Biol Rep 38(8):5355–5360. doi:10.1007/s11033-011-0687-4

    PubMed  Google Scholar 

  • Declerck PJ (2011) Thrombin activatable fibrinolysis inhibitor. Hamostaseologie 31(3):165–166. doi:10.5482/ha-1155, 168–173

    CAS  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    CAS  PubMed  Google Scholar 

  • Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D (1999) Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 13(11):1315–1324

    CAS  PubMed  Google Scholar 

  • Dohgu S, Takata F, Matsumoto J, Oda M, Harada E, Watanabe T, Nishioku T, Shuto H, Yamauchi A, Kataoka Y (2011) Autocrine and paracrine up-regulation of blood-brain barrier function by plasminogen activator inhibitor-1. Microvasc Res 81(1):103–107. doi:10.1016/j.mvr.2010.10.004

    CAS  PubMed  Google Scholar 

  • Doutheil J, Althausen S, Gissel C, Paschen W (1999) Activation of MYD116 (gadd34) expression following transient forebrain ischemia of rat: implications for a role of disturbances of endoplasmic reticulum calcium homeostasis. Brain Res Mol Brain Res 63(2):225–232, S0169328X98002769 [pii]

    CAS  PubMed  Google Scholar 

  • Echeverry R, Wu J, Haile WB, Guzman J, Yepes M (2010) Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest 120(6):2194–2205. doi:10.1172/JCI41722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239. doi:10.1002/glia.10146

    CAS  PubMed  Google Scholar 

  • Etique N, Verzeaux L, Dedieu S, Emonard H (2013) LRP-1: a checkpoint for the extracellular matrix proteolysis. BioMed Res Int 2013:152163. doi:10.1155/2013/152163

    PubMed Central  PubMed  Google Scholar 

  • Fernandez-Cadenas I, Del Rio-Espinola A, Rubiera M, Mendioroz M, Domingues-Montanari S, Cuadrado E, Hernandez-Guillamon M, Rosell A, Ribo M, Alvarez-Sabin J, Molina CA, Montaner J (2010) PAI-1 4G/5G polymorphism is associated with brain vessel reocclusion after successful fibrinolytic therapy in ischemic stroke patients. Int J Neurosci 120(4):245–251. doi:10.3109/00207451003597169

    CAS  PubMed  Google Scholar 

  • Fernandez-Monreal M, Lopez-Atalaya JP, Benchenane K, Cacquevel M, Dulin F, Le Caer JP, Rossier J, Jarrige AC, Mackenzie ET, Colloc'h N, Ali C, Vivien D (2004) Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem 279(49):50850–50856. doi:10.1074/jbc.M407069200

    CAS  PubMed  Google Scholar 

  • Flavin MP, Zhao G, Ho LT (2000) Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro. Glia 29(4):347–354

    CAS  PubMed  Google Scholar 

  • Fraser SR, Booth NA, Mutch NJ (2011) The antifibrinolytic function of factor XIII is exclusively expressed through alpha(2)-antiplasmin cross-linking. Blood 117(23):6371–6374. doi:10.1182/blood-2011-02-333203

    PubMed Central  PubMed  Google Scholar 

  • Friedman GC, Seeds NW (1995) Tissue plasminogen activator mRNA expression in granule neurons coincides with their migration in the developing cerebellum. J Comp Neurol 360(4):658–670. doi:10.1002/cne.903600410

    CAS  PubMed  Google Scholar 

  • Gabriel C, Ali C, Lesne S, Fernandez-Monreal M, Docagne F, Plawinski L, MacKenzie ET, Buisson A, Vivien D (2003) Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB J 17(2):277–279. doi:10.1096/fj.02-0403fje

    CAS  PubMed  Google Scholar 

  • Gelderblom M, Neumann M, Ludewig P, Bernreuther C, Krasemann S, Arunachalam P, Gerloff C, Glatzel M, Magnus T (2013) Deficiency in serine protease inhibitor neuroserpin exacerbates ischemic brain injury by increased postischemic inflammation. PLoS One 8(5), e63118. doi:10.1371/journal.pone.0063118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gils A, Declerck PJ (2004) Plasminogen activator inhibitor-1. Curr Med Chem 11(17):2323–2334

    CAS  PubMed  Google Scholar 

  • Godier A, Hunt BJ (2013) Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost 11(1):26–34. doi:10.1111/jth.12064

    CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240. doi:10.1146/annurev.neuro.22.1.219

    CAS  PubMed  Google Scholar 

  • Gravanis I, Tsirka SE (2005) Tissue plasminogen activator and glial function. Glia 49(2):177–183. doi:10.1002/glia.20115

    PubMed  Google Scholar 

  • Greenidge AR, Hall KR, Hambleton IR, Thomas R, Monroe DM, Landis RC (2013) Plasmin activation of glial cells through protease-activated receptor 1. Pathol Res Int 2013:314709. doi:10.1155/2013/314709

    Google Scholar 

  • Gur-Wahnon D, Mizrachi T, Maaravi-Pinto FY, Lourbopoulos A, Grigoriadis N, Higazi AA, Brenner T (2013) The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention. J Neuroinflammation 10(1):124. doi:10.1186/1742-2094-10-124

    PubMed Central  PubMed  Google Scholar 

  • Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 269(33):21191–21197

    CAS  PubMed  Google Scholar 

  • Halterman MW, Gill M, DeJesus C, Ogihara M, Schor NF, Federoff HJ (2010) The endoplasmic reticulum stress response factor CHOP-10 protects against hypoxia-induced neuronal death. J Biol Chem 285(28):21329–21340. doi:10.1074/jbc.M109.095299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hastings GA, Coleman TA, Haudenschild CC, Stefansson S, Smith EP, Barthlow R, Cherry S, Sandkvist M, Lawrence DA (1997) Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J Biol Chem 272(52):33062–33067

    CAS  PubMed  Google Scholar 

  • Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108(6):779–784. doi:10.1172/JCI13992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffmann MC, Nitsch C, Scotti AL, Reinhard E, Monard D (1992) The prolonged presence of glia-derived nexin, an endogenous protease inhibitor, in the hippocampus after ischemia-induced delayed neuronal death. Neuroscience 49(2):397–408

    CAS  PubMed  Google Scholar 

  • Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, Schoonjans L, Kandel ER, Godfraind JM, Mulligan R, Collen D, Carmeliet P (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA 93(16):8699–8704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hultman K, Blomstrand F, Nilsson M, Wilhelmsson U, Malmgren K, Pekny M, Kousted T, Jern C, Tjarnlund-Wolf A (2010) Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: response to injury-related factors. J Neurosci Res 88(11):2441–2449. doi:10.1002/jnr.22412

    CAS  PubMed  Google Scholar 

  • Jeon H, Kim JH, Lee WH, Lee MS, Suk K (2012) Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation 9:149. doi:10.1186/1742-2094-9-149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin R, Yang G, Li G (2010) Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 38(3):376–385. doi:10.1016/j.nbd.2010.03.008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson L, Jansson JH, Boman K, Nilsson TK, Stegmayr B, Hallmans G (2000) Tissue plasminogen activator, plasminogen activator inhibitor-1, and tissue plasminogen activator/plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke. Stroke 31(1):26–32

    CAS  PubMed  Google Scholar 

  • Jood K, Ladenvall P, Tjarnlund-Wolf A, Ladenvall C, Andersson M, Nilsson S, Blomstrand C, Jern C (2005) Fibrinolytic gene polymorphism and ischemic stroke. Stroke 36(10):2077–2081. doi:10.1161/01.STR.0000183617.54752.69

    CAS  PubMed  Google Scholar 

  • Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549. doi:10.1002/ana.23626

    CAS  PubMed  Google Scholar 

  • Kim J, Hajjar KA (2002) Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci 7:d341–d348

    CAS  PubMed  Google Scholar 

  • Krueger SR, Ghisu GP, Cinelli P, Gschwend TP, Osterwalder T, Wolfer DP, Sonderegger P (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J Neurosci 17(23):8984–8996

    CAS  PubMed  Google Scholar 

  • Krystosek A, Seeds NW (1981) Plasminogen activator release at the neuronal growth cone. Science 213(4515):1532–1534

    CAS  PubMed  Google Scholar 

  • Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. doi:10.3389/fneur.2013.00032

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lebeurrier N, Liot G, Lopez-Atalaya JP, Orset C, Fernandez-Monreal M, Sonderegger P, Ali C, Vivien D (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol Cell Neurosci 30(4):552–558. doi:10.1016/j.mcn.2005.09.005

    CAS  PubMed  Google Scholar 

  • Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG (2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1(6):530–535. doi:10.1093/embo-reports/kvd107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CZ, Xue Z, Zhu Y, Yang GY, Young WL (2007) Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage. Stroke 38(9):2563–2568. doi:10.1161/STROKEAHA.106.481515

    CAS  PubMed  Google Scholar 

  • Leebeek FW, Goor MP, Guimaraes AH, Brouwers GJ, Maat MP, Dippel DW, Rijken DC (2005) High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J Thromb Haemost 3(10):2211–2218. doi:10.1111/j.1538-7836.2005.01484.x

    CAS  PubMed  Google Scholar 

  • Li Y, Zhu W, Tao J, Xin P, Liu M, Li J, Wei M (2012) Fasudil protects the heart against ischemia-reperfusion injury by attenuating endoplasmic reticulum stress and modulating SERCA activity: the differential role for PI3K/Akt and JAK2/STAT3 signaling pathways. PLoS One 7(10), e48115. doi:10.1371/journal.pone.0048115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lijnen HR (2001) Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 86(1):324–333

    CAS  PubMed  Google Scholar 

  • Liot G, Roussel BD, Lebeurrier N, Benchenane K, Lopez-Atalaya JP, Vivien D, Ali C (2006) Tissue-type plasminogen activator rescues neurones from serum deprivation-induced apoptosis through a mechanism independent of its proteolytic activity. J Neurochem 98(5):1458–1464. doi:10.1111/j.1471-4159.2006.03982.x

    CAS  PubMed  Google Scholar 

  • Liu D, Cheng T, Guo H, Fernandez JA, Griffin JH, Song X, Zlokovic BV (2004) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med 10(12):1379–1383. doi:10.1038/nm1122

    CAS  PubMed  Google Scholar 

  • Lobov S, Croucher DR, Saunders DN, Ranson M (2008) Plasminogen activator inhibitor type 2 inhibits cell surface associated tissue plasminogen activator in vitro: potential receptor interactions. Thromb Haemost 100(2):319–329

    CAS  PubMed  Google Scholar 

  • Lopez-Atalaya JP, Roussel BD, Levrat D, Parcq J, Nicole O, Hommet Y, Benchenane K, Castel H, Leprince J, Van To D, Bureau R, Rault S, Vaudry H, Petersen KU, Santos JS, Ali C, Vivien D (2008) Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity. J Cereb Blood Flow Metab 28(6):1212–1221. doi:10.1038/jcbfm.2008.14

    CAS  PubMed  Google Scholar 

  • Macrez R, Bezin L, Le Mauff B, Ali C, Vivien D (2010) Functional occurrence of the interaction of tissue plasminogen activator with the NR1 Subunit of N-methyl-D-aspartate receptors during stroke. Stroke 41(12):2950–2955. doi:10.1161/STROKEAHA.110.592360

    CAS  PubMed  Google Scholar 

  • Macrez R, Obiang P, Gauberti M, Roussel B, Baron A, Parcq J, Casse F, Hommet Y, Orset C, Agin V, Bezin L, Berrocoso TG, Petersen KU, Montaner J, Maubert E, Vivien D, Ali C (2011) Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke 42(8):2315–2322. doi:10.1161/STROKEAHA.110.606293

    CAS  PubMed  Google Scholar 

  • Mansuy IM, van der Putten H, Schmid P, Meins M, Botteri FM, Monard D (1993) Variable and multiple expression of Protease Nexin-1 during mouse organogenesis and nervous system development. Development 119(4):1119–1134

    CAS  PubMed  Google Scholar 

  • Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86(4):1133–1149. doi:10.1152/physrev.00015.2006, 86/4/1133 [pii]

    CAS  PubMed  Google Scholar 

  • Marti-Fabregas J, Borrell M, Cocho D, Belvis R, Castellanos M, Montaner J, Pagonabarraga J, Aleu A, Molina-Porcel L, Diaz-Manera J, Bravo Y, Alvarez-Sabin J, Davalos A, Fontcuberta J, Marti-Vilalta JL (2005) Hemostatic markers of recanalization in patients with ischemic stroke treated with rt-PA. Neurology 65(3):366–370. doi:10.1212/01.wnl.0000171704.50395.ba

    CAS  PubMed  Google Scholar 

  • Matys T, Strickland S (2003) Tissue plasminogen activator and NMDA receptor cleavage. Nat Med 9(4):371–372. doi:10.1038/nm0403-371, author reply 372–373

    CAS  PubMed  Google Scholar 

  • Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S (2004) Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA 101(46):16345–16350. doi:10.1073/pnas.0407355101

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCaig D, Imai H, Gallagher L, Graham DI, Harland J, Moira Brown S, Mhairi Macrae I (2005) Evolution of GADD34 expression after focal cerebral ischaemia. Brain Res 1034(1–2):51–61. doi:10.1016/j.brainres.2004.11.058, S0006-8993(04)01887-6 [pii]

    CAS  PubMed  Google Scholar 

  • Millan M, Dorado L, Davalos A (2010) Fibrinolytic therapy in acute stroke. Curr Cardiol Rev 6(3):218–226. doi:10.2174/157340310791658758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mirante O, Price M, Puentes W, Castillo X, Benakis C, Thevenet J, Monard D, Hirt L (2013) Endogenous protease nexin-1 protects against cerebral ischemia. Int J Mol Sci 14(8):16719–16731. doi:10.3390/ijms140816719

    PubMed Central  PubMed  Google Scholar 

  • Montaner J, Ribo M, Monasterio J, Molina CA, Alvarez-Sabin J (2003) Thrombin-activatable fibrinolysis inhibitor levels in the acute phase of ischemic stroke. Stroke 34(4):1038–1040. doi:10.1161/01.STR.0000063139.06585.45

    CAS  PubMed  Google Scholar 

  • Morimoto N, Oida Y, Shimazawa M, Miura M, Kudo T, Imaizumi K, Hara H (2007) Involvement of endoplasmic reticulum stress after middle cerebral artery occlusion in mice. Neuroscience 147(4):957–967. doi:10.1016/j.neuroscience.2007.04.017, S0306-4522(07)00470-8 [pii]

    CAS  PubMed  Google Scholar 

  • Mosesson MW, Siebenlist KR, Hernandez I, Lee KN, Christiansen VJ, McKee PA (2008) Evidence that alpha2-antiplasmin becomes covalently ligated to plasma fibrinogen in the circulation: a new role for plasma factor XIII in fibrinolysis regulation. J Thromb Haemost 6(9):1565–1570. doi:10.1111/j.1538-7836.2008.03056.x

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagai N, De Mol M, Lijnen HR, Carmeliet P, Collen D (1999) Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 99(18):2440–2444

    CAS  PubMed  Google Scholar 

  • Nagai N, Suzuki Y, Van Hoef B, Lijnen HR, Collen D (2005) Effects of plasminogen activator inhibitor-1 on ischemic brain injury in permanent and thrombotic middle cerebral artery occlusion models in mice. J Thromb Haemost 3(7):1379–1384. doi:10.1111/j.1538-7836.2005.01466.x

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi:10.1038/47513

    CAS  PubMed  Google Scholar 

  • Nakka VP, Gusain A, Raghubir R (2010) Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 17(2):189–202. doi:10.1007/s12640-009-9110-5

    PubMed  Google Scholar 

  • Needham PG, Brodsky JL (2013) How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim Biophys Acta 1833(11):2447–2457. doi:10.1016/j.bbamcr.2013.03.018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7(1):59–64. doi:10.1038/83358

    CAS  PubMed  Google Scholar 

  • Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13(1):1–8. doi:10.1016/j.jocn.2005.07.005

    CAS  PubMed  Google Scholar 

  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477. doi:10.1002/ana.20741

    PubMed  Google Scholar 

  • Obiang P, Macrez R, Jullienne A, Bertrand T, Lesept F, Ali C, Maubert E, Vivien D, Agin V (2012) GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J Neurosci 32(37):12726–12734. doi:10.1523/JNEUROSCI.6202-11.2012

    CAS  PubMed  Google Scholar 

  • Orbe J, Barrenetxe J, Rodriguez JA, Vivien D, Orset C, Parks WC, Birkland TP, Serrano R, Purroy A, Martinez de Lizarrondo S, Angles-Cano E, Paramo JA (2011) Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor-mediated mechanism. Circulation 124(25):2909–2919. doi:10.1161/CIRCULATIONAHA.111.047100

    CAS  PubMed  Google Scholar 

  • Owen CR, Kumar R, Zhang P, McGrath BC, Cavener DR, Krause GS (2005) PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. J Neurochem 94(5):1235–1242. doi:10.1111/j.1471-4159.2005.03276.x, JNC3276 [pii]

    CAS  PubMed  Google Scholar 

  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695):487–491. doi:10.1126/science.1100135

    CAS  PubMed  Google Scholar 

  • Parcq J, Bertrand T, Baron AF, Hommet Y, Angles-Cano E, Vivien D (2013) Molecular requirements for safer generation of thrombolytics by bioengineering the tissue-type plasminogen activator A chain. J Thromb Haemost 11(3):539–546. doi:10.1111/jth.12128

    CAS  PubMed  Google Scholar 

  • Paschen W, Hayashi T, Saito A, Chan PH (2004) GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells. J Neurochem 90(3):694–701. doi:10.1111/j.1471-4159.2004.02555.x, JNC2555 [pii]

    CAS  PubMed  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. doi:10.1038/nrneurol.2010.17

    PubMed  Google Scholar 

  • Pineda D, Ampurdanes C, Medina MG, Serratosa J, Tusell JM, Saura J, Planas AM, Navarro P (2012) Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia 60(4):526–540. doi:10.1002/glia.22284

    PubMed  Google Scholar 

  • Polavarapu R, Gongora MC, Yi H, Ranganthan S, Lawrence DA, Strickland D, Yepes M (2007) Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood 109(8):3270–3278. doi:10.1182/blood-2006-08-043125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ribo M, Montaner J, Molina CA, Arenillas JF, Santamarina E, Alvarez-Sabin J (2004) Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thromb Haemost 91(6):1146–1151. doi:10.1267/THRO04061146

    CAS  PubMed  Google Scholar 

  • Rijken DC, Lijnen HR (2009) New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 7(1):4–13. doi:10.1111/j.1538-7836.2008.03220.x

    CAS  PubMed  Google Scholar 

  • Rijken DC, Sakharov DV (2001) Basic principles in thrombolysis: regulatory role of plasminogen. Thromb Res 103(Suppl 1):S41–S49

    CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez R, Agulla J, Perez-Mato M, Sobrino T, Castillo J (2011a) Neuroprotective effect of neuroserpin in rat primary cortical cultures after oxygen and glucose deprivation and tPA. Neurochem Int 58(3):337–343. doi:10.1016/j.neuint.2010.12.006

    CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez R, Millan M, Sobrino T, Miranda E, Brea D, de la Ossa NP, Blanco M, Perez J, Dorado L, Castellanos M, Lomas DA, Moro MA, Davalos A, Castillo J (2011b) The natural tissue plasminogen activator inhibitor neuroserpin and acute ischaemic stroke outcome. Thromb Haemost 105(3):421–429. doi:10.1160/TH10-09-0621

    CAS  PubMed  Google Scholar 

  • Rogove AD, Tsirka SE (1998) Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 8(1):19–25

    CAS  PubMed  Google Scholar 

  • Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE (1999) Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci 112(Pt 22):4007–4016

    CAS  PubMed  Google Scholar 

  • Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E (2004) Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem 279(11):10346–10356. doi:10.1074/jbc.M310964200

    CAS  PubMed  Google Scholar 

  • Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordonez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA (2011a) Unravelling the twists and turns of the serpinopathies. FEBS J 278(20):3859–3867. doi:10.1111/j.1742-4658.2011.08201.x

    CAS  PubMed  Google Scholar 

  • Roussel BD, Mysiorek C, Rouhiainen A, Jullienne A, Parcq J, Hommet Y, Culot M, Berezowski V, Cecchelli R, Rauvala H, Vivien D, Ali C (2011b) HMGB-1 promotes fibrinolysis and reduces neurotoxicity mediated by tissue plasminogen activator. J Cell Sci 124(Pt 12):2070–2076. doi:10.1242/jcs.084392

    CAS  PubMed  Google Scholar 

  • Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118. doi:10.1016/S1474-4422(12)70238-7

    CAS  PubMed  Google Scholar 

  • Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 22(6):2125–2134

    CAS  PubMed  Google Scholar 

  • Samson AL, Nevin ST, Croucher D, Niego B, Daniel PB, Weiss TW, Moreno E, Monard D, Lawrence DA, Medcalf RL (2008) Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 107(4):1091–1101. doi:10.1111/j.1471-4159.2008.05687.x

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sashindranath M, Sales E, Daglas M, Freeman R, Samson AL, Cops EJ, Beckham S, Galle A, McLean C, Morganti-Kossmann C, Rosenfeld JV, Madani R, Vassalli JD, Su EJ, Lawrence DA, Medcalf RL (2012) The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans. Brain 135(Pt 11):3251–3264. doi:10.1093/brain/aws178

    PubMed Central  PubMed  Google Scholar 

  • Schaller J, Gerber SS (2011) The plasmin-antiplasmin system: structural and functional aspects. Cell Mol Life Sci 68(5):785–801. doi:10.1007/s00018-010-0566-5

    CAS  PubMed  Google Scholar 

  • Siao CJ, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22(9):3352–3358

    CAS  PubMed  Google Scholar 

  • Siesjo BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1(3):165–211

    CAS  PubMed  Google Scholar 

  • Smedsrod B, Einarsson M (1990) Clearance of tissue plasminogen activator by mannose and galactose receptors in the liver. Thromb Haemost 63(1):60–66

    CAS  PubMed  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334(6059):1086–1090. doi:10.1126/science.1209235

    CAS  PubMed  Google Scholar 

  • Soeda S, Oda M, Ochiai T, Shimeno H (2001) Deficient release of plasminogen activator inhibitor-1 from astrocytes triggers apoptosis in neuronal cells. Brain Res Mol Brain Res 91(1-2):96–103

    CAS  PubMed  Google Scholar 

  • Strbian D, Meretoja A, Putaala J, Kaste M, Tatlisumak T (2013) Cerebral edema in acute ischemic stroke patients treated with intravenous thrombolysis. Int J Stroke 8(7):529–534. doi:10.1111/j.1747-4949.2012.00781.x

    PubMed  Google Scholar 

  • Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, Strickland DK, Betsholtz C, Eriksson U, Lawrence DA (2008) Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 14(7):731–737. doi:10.1038/nm1787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki Y (2010) Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci 113(3):203–207

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR (2007) Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J Thromb Haemost 5(8):1732–1739. doi:10.1111/j.1538-7836.2007.02628.x

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nagai N, Yamakawa K, Kawakami J, Lijnen HR, Umemura K (2009) Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood 114(15):3352–3358. doi:10.1182/blood-2009-02-203919

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Yasui H, Brzoska T, Mogami H, Urano T (2011) Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood 118(11):3182–3185. doi:10.1182/blood-2011-05-353912

    CAS  PubMed  Google Scholar 

  • Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M (2004) Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11(4):403–415. doi:10.1038/sj.cdd.4401365, 4401365 [pii]

    CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518. doi:10.1016/j.nbd.2009.11.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsirka SE, Gualandris A, Amaral DG, Strickland S (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377(6547):340–344. doi:10.1038/377340a0

    CAS  PubMed  Google Scholar 

  • Urano T, Suzuki Y (2012) Accelerated fibrinolysis and its propagation on vascular endothelial cells by secreted and retained tPA. J Biomed Biotechnol 2012:208108. doi:10.1155/2012/208108

    PubMed Central  PubMed  Google Scholar 

  • Vercauteren E, Gils A, Declerck PJ (2013) Thrombin activatable fibrinolysis inhibitor: a putative target to enhance fibrinolysis. Semin Thromb Hemost 39(4):365–372. doi:10.1055/s-0033-1334488

    CAS  PubMed  Google Scholar 

  • Vivien D, Gauberti M, Montagne A, Defer G, Touze E (2011) Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab 31(11):2119–2134. doi:10.1038/jcbfm.2011.127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Lee SR, Arai K, Tsuji K, Rebeck GW, Lo EH (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9(10):1313–1317. doi:10.1038/nm926

    CAS  PubMed  Google Scholar 

  • Wardlaw JM (2012) Prediction of haematoma expansion with the CTA spot sign: a useful biomarker? Lancet Neurol 11(4):294–295. doi:10.1016/S1474-4422(12)70045-5

    PubMed  Google Scholar 

  • White F, McCaig D, Brown SM, Graham DI, Harland J, Macrae IM (2004) Up-regulation of a growth arrest and DNA damage protein (GADD34) in the ischaemic human brain: implications for protein synthesis regulation and DNA repair. Neuropathol Appl Neurobiol 30(6):683–691. doi:10.1111/j.1365-2990.2004.00584.x

    CAS  PubMed  Google Scholar 

  • Wiklund PG, Nilsson L, Ardnor SN, Eriksson P, Johansson L, Stegmayr B, Hamsten A, Holmberg D, Asplund K (2005) Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of stroke: replicated findings in two nested case-control studies based on independent cohorts. Stroke 36(8):1661–1665. doi:10.1161/01.STR.0000174485.10277.24

    CAS  PubMed  Google Scholar 

  • Yang D, Sun YY, Nemkul N, Baumann JM, Shereen A, Dunn RS, Wills-Karp M, Lawrence DA, Lindquist DM, Kuan CY (2013) Plasminogen activator inhibitor-1 mitigates brain injury in a rat model of infection-sensitized neonatal hypoxia-ischemia. Cereb Cortex 23(5):1218–1229. doi:10.1093/cercor/bhs115

    PubMed Central  PubMed  Google Scholar 

  • Yao Y, Tsirka SE (2011) Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 124(Pt 9):1486–1495. doi:10.1242/jcs.082834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96(2):569–576

    CAS  PubMed  Google Scholar 

  • Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 112(10):1533–1540. doi:10.1172/JCI19212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32(1):48–55. doi:10.1016/j.tins.2008.09.006

    CAS  PubMed  Google Scholar 

  • Young AR, Ali C, Duretete A, Vivien D (2007) Neuroprotection and stroke: time for a compromise. J Neurochem 103(4):1302–1309. doi:10.1111/j.1471-4159.2007.04866.x

    CAS  PubMed  Google Scholar 

  • Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z (2011) Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res 1367:85–93. doi:10.1016/j.brainres.2010.10.017

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang L, Yepes M, Jiang Q, Li Q, Arniego P, Coleman TA, Lawrence DA, Chopp M (2002) Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106(6):740–745

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang ZG, Ding GL, Jiang Q, Liu X, Meng H, Hozeska A, Zhang C, Li L, Morris D, Zhang RL, Lu M, Chopp M (2005) Multitargeted effects of statin-enhanced thrombolytic therapy for stroke with recombinant human tissue-type plasminogen activator in the rat. Circulation 112(22):3486–3494. doi:10.1161/CIRCULATIONAHA.104.516757

    CAS  PubMed  Google Scholar 

  • Zhang X, Polavarapu R, She H, Mao Z, Yepes M (2007) Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-kappaB pathway activation. Am J Pathol 171(4):1281–1290. doi:10.2353/ajpath.2007.070472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, An J, Haile WB, Echeverry R, Strickland DK, Yepes M (2009a) Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab 29(12):1946–1954. doi:10.1038/jcbfm.2009.174

    CAS  PubMed  Google Scholar 

  • Zhang L, Chopp M, Jia L, Cui Y, Lu M, Zhang ZG (2009b) Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J Cereb Blood Flow Metab 29(11):1816–1824. doi:10.1038/jcbfm.2009.105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YP, Wang WL, Liu J, Li WB, Bai LL, Yuan YD, Song SX (2013) Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca(2+) signaling. Thromb Res 131(1):64–71. doi:10.1016/j.thromres.2012.09.003

    CAS  PubMed  Google Scholar 

  • Zhu H, Fan X, Yu Z, Liu J, Murata Y, Lu J, Zhao S, Hajjar KA, Lo EH, Wang X (2010) Annexin A2 combined with low-dose tPA improves thrombolytic therapy in a rat model of focal embolic stroke. J Cereb Blood Flow Metab 30(6):1137–1146. doi:10.1038/jcbfm.2009.279

    PubMed Central  PubMed  Google Scholar 

  • Zmijewski JW, Bae HB, Deshane JS, Peterson CB, Chaplin DD, Abraham E (2011) Inhibition of neutrophil apoptosis by PAI-1. Am J Physiol Lung Cell Mol Physiol 301(2):L247–254. doi:10.1152/ajplung.00075.2011

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit D. Roussel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roussel, B.D., Louessard, M., de Lizarrondo, S.M., Vivien, D. (2015). The Dual Role of Serpins and Tissue-Type Plasminogen Activator During Stroke. In: Geiger, M., WahlmĂĽller, F., FurtmĂĽller, M. (eds) The Serpin Family. Springer, Cham. https://doi.org/10.1007/978-3-319-22711-5_16

Download citation

Publish with us

Policies and ethics