Skip to main content

The Future of Glass-ionomers

  • Chapter
Glass-Ionomers in Dentistry

Abstract

As the use and acceptance of glass-ionomer cement (GIC) increase, the scientific community will endeavour to improve current limitations due to their relatively low physical properties compared to other materials. This chapter discusses a range of future improvements in glass-ionomer cements which will increase their longevity and allow them to be used in place of other materials such as the widely used amalgam.

To improve their material properties, many paths can be investigated. New glass filler systems, including a variety of additions, modifications and pre-reacted GIC filler particles, and their effect on physical properties are detailed in this chapter. Other categories of filler particles, including spherical particles, glass fibre reinforcement and nanoparticle developments, as well as their effect on improving GIC properties such as fracture toughness, wear and other physical and aesthetic properties are documented.

Technologies utilising GIC materials as controlled-release vehicles for different materials are discussed. The importance of new mechanisms, such as self-healing technologies and self-cleaning glass technology, is documented in efforts to improve the longevity of GICs and their physical properties. Novel polymer networks, developed for improvements in strength and other properties, and technologies related to porosity reduction, methods to improve fracture toughness and improvements in adhesion durability are also be provided. Future delivery systems provide the user with an insight of what could be the new delivery systems of GICs. Important avenues for the improvement of GIC wear properties, and improvements in aesthetic properties are discussed.

Other topics focus on the future use of GIC participating in pharmacological approaches to caries reduction and restorative dentistry and include biomineralisation and biopromoting improvements, biofilm alterations, the antimicrobial/bioprotection properties of GICs and the possibility of antibiotic additions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Naimi O, Itota T, Hobson R, Mccabe J. Fluoride release for restorative materials and its effect on biofilm formation in natural saliva. J Mater Sci Mater Med. 2008;19:1243–8.

    Article  PubMed  Google Scholar 

  • Altunsoy M, Botsali MS, Korkut E, Kucukyilmaz E, Sener Y. Effect of different surface treatments on the shear and microtensile bond strength of resin-modified glass ionomer cement to dentin. Acta Odontol Scand. 2014;72:1–6.

    Google Scholar 

  • Arbabzadeh-Zavareh F, Gibbs T, Meyers IA, Bouzari M, Mortazavi S, Walsh LJ. Recharge pattern of contemporary glass ionomer restoratives. Cord Conf Proc. 2012;9:139–45.

    Google Scholar 

  • Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res. 2012;91:454–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bakis C, Bank LC, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, Triantafillou T. Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compos Constr. 2002;6:73–87.

    Article  Google Scholar 

  • Bala O, Arisu HD, Yikilgan I, Arslan S, Gullu A. Evaluation of surface roughness and hardness of different glass ionomer cements. Eur J Dent. 2012;6:79–86.

    PubMed Central  PubMed  Google Scholar 

  • Bate CS. The pathology of dental caries. Odontological Society of Great Britain London: Cox & Wyman; 1864.

    Google Scholar 

  • Benelli EM, Serra MC, Rodrigues Jr AL, Cury JA. In situ anticariogenic potential of glass ionomer cement. Caries Res. 1993;27:280–4.

    Article  PubMed  Google Scholar 

  • Blossey R. Self-cleaning surfaces – virtual realities. Nat Mater. 2003;2:301–6.

    Article  PubMed  Google Scholar 

  • Boehm AJR, Peuker M, Walter A, Broyles BR, Oxman JD, Dubbe JW, Hartung MG, Guggenmos S. Mixer for mixing a dental composition. United States Patent Application 20110189059. 2011.

    Google Scholar 

  • Burke FJ. Dental materials – what goes where? The current status of glass ionomer as a material for loadbearing restorations in posterior teeth. Dent Update. 2013;40:840–4.

    PubMed  Google Scholar 

  • Burke FJ. Reinforced glass-ionomer restorations. Dent Abstr. 2014;59, E79.

    Article  Google Scholar 

  • Busscher HJ, Rinastiti M, Siswomihardjo W, Van Der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89:657–65.

    Article  PubMed  Google Scholar 

  • Carlén A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001;22:481–7.

    Article  PubMed  Google Scholar 

  • Cheetham JJW. Dental capsule. United States Patent Application 20140305816. 2014.

    Google Scholar 

  • Cheetham JJ, Palamara JE, Tyas MJ, Burrow MF. A comparison of resin-modified glass-ionomer and resin composite polymerisation shrinkage stress in a wet environment. J Mech Behav Biomed Mater. 2014a;29:33–41.

    Article  PubMed  Google Scholar 

  • Cheetham JJ, Palamara JEA, Tyas MJ, Burrow MF. Evaluation of the interfacial work of fracture of glass-ionomer cements bonded to dentin. J Mech Behav Biomed Mater. 2014b;29:427–37.

    Article  PubMed  Google Scholar 

  • Colquhoun H, Klumperman B. Self-healing polymers. Polym Chem. 2013;4:4832–3.

    Article  Google Scholar 

  • Culbertson BM. Glass-ionomer dental restoratives. Prog Polym Sci. 2001;26:577–604.

    Article  Google Scholar 

  • Dabsie F, Gregoire G, Sixou M, Sharrock P. Does strontium play a role in the cariostatic activity of glass ionomer? Strontium diffusion and antibacterial activity. J Dent. 2009;37:554–9.

    Article  PubMed  Google Scholar 

  • De Munck J, Mine A, Poitevin A, Van Ende A, Cardoso MV, Van Landuyt KL, Peumans M, Van Meerbeek B. Meta-analytical review of parameters involved in dentin bonding. J Dent Res. 2012;91:351–7.

    Article  PubMed  Google Scholar 

  • Diem VT, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin Oral Investig. 2014;18:753–9.

    Article  PubMed  Google Scholar 

  • Dimkov A, Nicholson JW, Gjorgievska E. On the possibility of incorporating antimicrobial components into glass-ionomer cements. Prilozi. 2009;30:219–37.

    PubMed  Google Scholar 

  • Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou-Antoniades M, Kotsanos N. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J. 2013;32:296–304.

    Article  PubMed  Google Scholar 

  • El-Askary FS, Nassif MS. The effect of the pre-conditioning step on the shear bond strength of nano-filled resin-modified glass-ionomer to dentin. Eur J Dent. 2011;5:150–6.

    PubMed Central  PubMed  Google Scholar 

  • El-Baky RMA, Hussien SM. Comparative antimicrobial activity and durability of different glass ionomer restorative materials with and without chlorohexidine. J Adv Biotech Bioeng. 2013;1:14–21.

    Google Scholar 

  • Fareed MA, Stamboulis A. Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement. Int J Biomater. 2014a.

    Google Scholar 

  • Fareed MA, Stamboulis A. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (Pg) montmorillonite with poly(acrylic acid). J Mater Sci Mater Med. 2014;25:91–9.

    Article  PubMed  Google Scholar 

  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    Article  PubMed  Google Scholar 

  • Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27:29–38.

    Article  PubMed  Google Scholar 

  • Ferreira JM, Pinheiro SL, Sampaio FC, Menezes VA. Use of glass ionomer cement containing antibiotics to seal off infected dentin: a randomized clinical trial. Braz Dent J. 2013;24:68–73.

    Article  PubMed  Google Scholar 

  • Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C. 2003;23:763–72.

    Article  Google Scholar 

  • Forsten L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials. 1998;19:503–8.

    Article  PubMed  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90:1847–68.

    Article  PubMed  Google Scholar 

  • Fukuda R, Yoshida Y, Nakayama Y, Okazaki M, Inoue S, Sano H, Suzuki K, Shintani H, Van Meerbeek B. Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials. 2003;24:1861–7.

    Article  PubMed  Google Scholar 

  • Garcia SJ. Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J. 2014;53:118–25.

    Article  Google Scholar 

  • Gerdolle DA, Mortier E, Droz D. Microleakage and polymerization shrinkage of various polymer restorative materials. J Dent Child. 2008;75:125–33.

    Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.

    Article  PubMed  Google Scholar 

  • Giray F, Peker S, Durmus B, Kargül B. Microleakage of new glass ionomer restorative materials in permanent teeth. Eur J Paediatr Dent. 2014;15:122–6.

    PubMed  Google Scholar 

  • Gu YW, Yap AU, Cheang P, Kumar R. Spheroidization of glass powders for glass ionomer cements. Biomaterials. 2004;25:4029–35.

    Article  PubMed  Google Scholar 

  • Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of Tio2/Sio2 films. Surf Coat Technol. 2005;191:155–60.

    Article  Google Scholar 

  • Guggenberger R, May R, Stefan K. New trends in glass-ionomer chemistry. Biomaterials. 1998;19:479–83.

    Article  PubMed  Google Scholar 

  • Guida A, Hill RG, Towler MR, Eramo S. Fluoride release from model glass ionomer cements. J Mater Sci Mater Med. 2002;13:645–9.

    Article  PubMed  Google Scholar 

  • Hamama HH, Burrow MF, Yiu C. Effect of dentine conditioning on adhesion of resin-modified glass ionomer adhesives. Aust Dent J. 2014;59:193–200.

    Article  PubMed  Google Scholar 

  • Hammouda IM. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J Mech Behav Biomed Mater. 2009;2:73–81.

    Article  PubMed  Google Scholar 

  • Han L, Okiji T. Evaluation of the ions release / incorporation of the prototype S-Prg filler-containing endodontic sealer. Dent Mater J. 2011.

    Google Scholar 

  • Hatanaka K, Irie M, Tjandrawinata R, Suzuki K. Effect of spherical silica filler addition on immediate interfacial Gap-formation in class V cavity and mechanical properties of resin-modified glass-ionomer cement. Dent Mater J. 2006;25:415–22.

    Article  PubMed  Google Scholar 

  • Hengtrakool C, Pearson GJ, Wilson M. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness. J Dent. 2006;34:588–97.

    Article  PubMed  Google Scholar 

  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  Google Scholar 

  • Hokii Y, Yoshimitsu R, Yamamoto K, Fukushima S, Fusejima F, Kumagai T. Protection of enamel-glass ionomer restorative margins by resin-coatings. Dent Mater. 2014;30 Suppl 1:E107.

    Google Scholar 

  • Hook ER, Owen OJ, Bellis CA, Holder JA, O’sullivan DJ, Barbour ME. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles. J Nanobiotechnol. 2014;12:3.

    Article  Google Scholar 

  • Huo X, Torres V, Elsner O, Pfefferkorn F. Texture analysis of glass ionomers. IADR 89th General Session San Diego, USA, 2011.

    Google Scholar 

  • Irie M, Nagaoka N, Tamada Y, Maruo Y, Nishigawa G, Minagi S, Finger WJ. Effect of spherical silica additions on marginal gaps and compressive strength of experimental glass-ionomer cements. Am J Dent. 2011;24:310–4.

    PubMed  Google Scholar 

  • ISO 2008. ISO 7405:2008 Dentistry-evaluation of biocompatibility of medical devices used in dentistry.

    Google Scholar 

  • ISO 2009. International Standards Organisation 10993 – biological evaluation of medical devices part 1: evaluation and testing.

    Google Scholar 

  • Jayabal J, Mahesh R. Current state of topical antimicrobial therapy in management of early childhood caries. ISRN Dent. 2014;2014:5.

    Google Scholar 

  • Jones FH, Hutton BM, Hadley PC, Eccles AJ, Steele TA, Billington RW, Pearson GJ. Fluoride uptake by glass ionomer cements: − a surface analysis approach. Biomaterials. 2003;24:107–19.

    Article  PubMed  Google Scholar 

  • Kamijo K, Mukai Y, Tominaga T, Iwaya I, Fujino F, Hirata Y, Teranaka T. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler. Dent Mater J. 2009;28:227–33.

    Article  PubMed  Google Scholar 

  • Kawano F, Kon M, Kobayashi M, Miyai K. Reinforcement effect of short glass fibers with Cao–P2o5–Sio2–Al2o3 glass on strength of glass-ionomer cement. J Dent. 2001;29:377–80.

    Article  PubMed  Google Scholar 

  • Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  Google Scholar 

  • Knight GM. The pharmacological management of caries. Dental Asia, September/October 2007.

    Google Scholar 

  • Knight GM. The pharmacological management of dentine to protect against plaque microorganism degradation. PhD thesis, University of Adelaide; 2008.

    Google Scholar 

  • Knight GM, Mcintyre JM, Craig G, Zilm PS, Gully N. Inability to form a biofilm of Streptococcus mutans on silver fluoride-and potassium iodide-treated demineralized dentin. Quin Int. 2009;40:155.

    Google Scholar 

  • Korkmaz Y, Ozel E, Attar N, Ozge Bicer C. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers Med Sci. 2010;25:861–6.

    Article  PubMed  Google Scholar 

  • Latta M, Gross SM, Mchale WA. Microencapsulated compositions and methods for tissue mineralization. United States Patent Application 8889161. 2014.

    Google Scholar 

  • Lazaridou D, Belli R, Kramer N, Petschelt A, Lohbauer U. Dental materials for primary dentition: are they suitable for occlusal restorations? A two-body wear study. Eur Arch Paediatr Dent. 2015;16(2):165–72.

    Article  PubMed  Google Scholar 

  • Lloyd CH, Adamson M. The development of fracture toughness and fracture strength in posterior restorative materials. Dent Mater. 1987;3:225–31.

    Article  PubMed  Google Scholar 

  • Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014;2014:583612.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lohbauer U. Dental glass ionomer cements as permanent filling materials?–Properties, limitations and future trends. Materials. 2009;3:76–96.

    Article  Google Scholar 

  • Lohbauer U, Walker J, Nikolaenko S, Werner J, Clare A, Petschelt A, Greil P. Reactive fibre reinforced glass ionomer cements. Biomaterials. 2003;24:2901–7.

    Article  PubMed  Google Scholar 

  • Lohbauer U, Frankenberger R, Clare A, Petschelt A, Greil P. Toughening of dental glass ionomer cements with reactive glass fibres. Biomaterials. 2004;25:5217–25.

    Article  PubMed  Google Scholar 

  • Mackey TK, Contreras JT, Liang BA. The Minamata convention on mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal. Sci Total Environ. 2014;472:125–9.

    Article  PubMed  Google Scholar 

  • Manuja N, Nagpal R, Pandit IK. Dental adhesion: mechanism, techniques and durability. J Clin Pediatr Dent. 2012;36:223–34.

    Article  PubMed  Google Scholar 

  • Mckinney JE, Antonucci JM, Rupp NW. Wear and microhardness of glass-ionomer cements. J Dent Res. 1987;66:1134–9.

    Article  PubMed  Google Scholar 

  • Mckinney JE, Antonucci JM, Rupp NW. Wear and microhardness of a silver-sintered glass-ionomer cement. J Dent Res. 1988;67:831–5.

    Article  PubMed  Google Scholar 

  • Mei ML, Li Q-L, Chu C-H, Lo EC-M, Samaranayake LP. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 2013;12:4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitsuhashi A, Hanaoka K, Teranaka T. Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater. 2003;19:747–57.

    Article  PubMed  Google Scholar 

  • Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater. 2014;10:2096–104.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4:432–40.

    Article  PubMed  Google Scholar 

  • Moshaverinia A, Brantley WA, Chee WWL, Rohpour N, Ansari S, Zheng F, Heshmati RH, Darr JA, Schricker SR, Rehman IU. Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements. Dent Mater. 2010;26:1137–43.

    Article  PubMed  Google Scholar 

  • Moshaverinia A, Roohpour N, Chee WW, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21:1319–28.

    Article  Google Scholar 

  • Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19:485–94.

    Article  PubMed  Google Scholar 

  • Ogledzki M, Perry RD, Kugel G. Translucency of resin modified glass ionomer restoratives. AADR annual meeting, Tampa; 21–24 Mar 2012.

    Google Scholar 

  • Osorio R, Osorio E, Medina-Castillo AL, Toledano M. Polymer nanocarriers for dentin adhesion. J Dent Res. 2014;93(12):1258–63.

    Google Scholar 

  • Perdigão J. Dentin bonding – variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26:E24–37.

    Article  PubMed  Google Scholar 

  • Peterson AM, Kotthapalli H, Rahmathullah MAM, Palmese GR. Investigation of interpenetrating polymer networks for self-healing applications. Compos Sci Technol. 2012;72:330–6.

    Article  Google Scholar 

  • Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent Mater. 2005;21:864–81.

    Article  PubMed  Google Scholar 

  • Powis D, Follerås T, Merson S, Wilson A. Materials science improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.

    Article  PubMed  Google Scholar 

  • Prabhakar AR, Prahlad D, Kumar SR. Antibacterial activity, fluoride release, and physical properties of an antibiotic-modified glass ionomer cement. Pediatr Dent. 2013;35:411–5.

    PubMed  Google Scholar 

  • Priebe M, Fromm KM. One-pot synthesis and catalytic properties of encapsulated silver nanoparticles in silica nanocontainers. Part Part Syst Char. 2014;31(6):645–51.

    Google Scholar 

  • Qizheng C, Xiangting D, Weili Y, Jinxian W, Huiru W, Xiaofeng Y, Xiaohui Y. New developments of inorganic nanofibers fabricated by electrospinning. Rare Met Mater Eng. 2006;35:1167.

    Google Scholar 

  • Roche KJ, Stanton KT. Precipitation of biomimetic fluorhydroxyapatite/polyacrylic acid nanostructures. J Cryst Growth. 2015;409:80–8.

    Article  Google Scholar 

  • Samadzadeh M, Boura SH, Peikari M, Kasiriha S, Ashrafi A. A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat. 2010;68:159–64.

    Article  Google Scholar 

  • Seemann R, Flury S, Pfefferkorn F, Lussi A, Noack MJ. Restorative dentistry and restorative materials over the next 20 years: a Delphi survey. Dent Mater. 2014;30(4):442–8.

    Google Scholar 

  • Sennou HE, Lebugle AA, Gregoire GL. X-Ray photoelectron spectroscopy study of the dentin-glass ionomer cement interface. Dent Mater. 1999;15:229–37.

    Article  PubMed  Google Scholar 

  • Seppa L, Forss H, Øgaard B. The effect of fluoride application on fluoride release and the antibacterial action of glass lonomers. J Dent Res. 1993;72:1310–4.

    Article  PubMed  Google Scholar 

  • Setien VJ, Armstrong SR, Wefel JS. Interfacial fracture toughness between resin-modified glass ionomer and dentin using three different surface treatments. Dent Mater. 2005;21:498–504.

    Article  PubMed  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96.

    Article  PubMed  Google Scholar 

  • Shimazu K, Ogata K, Karibe H. Caries-preventive effect of fissure sealant containing surface reaction-type pre-reacted glass ionomer filler and bonded by self-etching primer. J Clin Pediatr Dent. 2012;36:343–7.

    Article  PubMed  Google Scholar 

  • Shiozawa M, Takahashi H, Iwasaki N. Fluoride release and mechanical properties after 1-year water storage of recent restorative glass ionomer cements. Clin Oral Investig. 2013;18:1–8.

    Google Scholar 

  • Smith DC. Development of glass-ionomer cement systems. Biomaterials. 1998;19:467–78.

    Article  PubMed  Google Scholar 

  • Steinberg D. Studying plaque biofilms on various dental surfaces. In: An Y, Friedman R, editors. Handbook of bacterial adhesion. Totowa, NJ: Humana Press; 2000.

    Google Scholar 

  • Suzuki YI-K, Aoyagi S, Kaneko M, Mukasa Y. Vacuum assisted mixer for capsule of dental restoration material. United States Patent Application 6776516. 2004.

    Google Scholar 

  • Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.

    Article  PubMed  Google Scholar 

  • Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, Agee KA, Key WO, Scheffel DL, Breschi L, Mazzoni A, Tjaderhane L, Nishitani Y, Tay FR, Pashley DH. Effect of phosphoric acid on the degradation of human dentin matrix. J Dent Res. 2013;92:87–91.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tyas MJ. Cariostatic effect of glass ionomer cement: a five-year clinical study. Aust Dent J. 1991;36:236–9.

    Article  PubMed  Google Scholar 

  • Tyas MJ. Milestones in adhesion: glass-ionomer cements. J Adhes Dent. 2003;5:259–66.

    PubMed  Google Scholar 

  • Van Amerongen WE. Dental caries under glass ionomer restorations. J Public Health Dent. 1996;56:150–4; discussion 161–3.

    Article  PubMed  Google Scholar 

  • Van Duinen RNB, Kleverlaan CJ, De Gee AJ, Werner A, Feilzer AJ. Early and long-term wear of ‘fast-Set’ conventional glass–ionomer cements. Dent Mater. 2005;21:716–20.

    Article  PubMed  Google Scholar 

  • Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28:215–35.

    PubMed  Google Scholar 

  • Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, De Munck J. Relationship between bond-strength tests and clinical outcomes. Dent Mater. 2010;26:E100–21.

    Article  PubMed  Google Scholar 

  • Walls A. Glass polyalkenoate (glass-ionomer) cements: a review. J Dent. 1986;14:231–46.

    Article  PubMed  Google Scholar 

  • Weng Y. Advanced antibacterial glass ionomer cements for improved dental restoratives. PhD 3481168, Purdue University; 2011.

    Google Scholar 

  • Weng Y, Howard L, Xie D. A novel star-shaped poly (carboxylic acid) for resin-modified glass-ionomer restoratives. J Biomater Sci Polym Ed. 2014;18:1–15.

    Google Scholar 

  • Wessel C, Ostermann R, Dersch R, Smarsly BM. Formation of inorganic nanofibers from preformed TiO2 nanoparticles via electrospinning. J Phys Chem C. 2010;115:362–72.

    Article  Google Scholar 

  • Williams JA, Billington RW, Pearson GJ. Comparison of Ion release from a glass ionomer cement as a function of the method of incorporation of added ions. Biomaterials. 1999;20:589–94.

    Article  PubMed  Google Scholar 

  • Williams JA, Billington RW, Pearson GJ. The glass ionomer cement: the sources of soluble fluoride. Biomaterials. 2002;23:2191–200.

    Article  PubMed  Google Scholar 

  • Wilson AD. Acidobasicity of oxide glasses used in glass ionomer cements. Dent Mater. 1996;12:25–9.

    Article  PubMed  Google Scholar 

  • Wilson AD, Nicholson JW. Acid–base cements: their biomedical and industrial applications. New York, NY, USA: Cambridge University Press; 2005.

    Google Scholar 

  • Wilson GO, Andersson HM, White SR, Sottos NR, Moore JS, Braun PV. Self‐healing polymers. In: Encyclopedia of polymer science and technology. Hoboken, NJ: Wiley-Interscience. 2010.

    Google Scholar 

  • Wu N, Xia X, Wei Q, Huang F. Preparation and properties of organic/inorganic hybrid nanofibres. Fibres and Textiles in Eastern Europe. 2010;18(78):21–3.

    Google Scholar 

  • Wu W, Xie D, Puckett A, Mays JW. Synthesis and formulation of vinyl-containing polyacids for improved light-cured glass-ionomer cements. Eur Polym J. 2003;39:663–70.

    Article  Google Scholar 

  • Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33:479–522.

    Article  Google Scholar 

  • Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16:129–38.

    Article  PubMed  Google Scholar 

  • Xie D, Zhao J, Weng Y. Synthesis and application of novel multi-arm poly(carboxylic acid)s for glass-ionomer restoratives. J Biomater Appl. 2010;24:419–36.

    Article  PubMed  Google Scholar 

  • Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater. 2011;27:487–96.

    Article  PubMed  Google Scholar 

  • Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27:762–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamazaki T, Schricker SR, Brantley WA, Culbertson BM, Johnston W. Viscoelastic behavior and fracture toughness of six glass-ionomer cements. J Prosthet Dent. 2006;96:266–72.

    Article  PubMed  Google Scholar 

  • Yelamanchili A, Darvell BW. Network competition in a resin-modified glass-ionomer cement. Dent Mater. 2008;24:1065–9.

    Article  PubMed  Google Scholar 

  • Yiu CK, Tay FR, King NM, Pashley DH, Carvalho RM, Carrilho MR. Interaction of resin-modified glass-ionomer cements with moist dentine. J Dent. 2004a;32:521–30.

    Article  PubMed  Google Scholar 

  • Yiu CK, Tay FR, King NM, Pashley DH, Sidhu SK, Neo JC, Toledano M, Wong SL. Interaction of glass-ionomer cements with moist dentin. J Dent Res. 2004b;83:283–9.

    Article  PubMed  Google Scholar 

  • Yli-Urpo H, Narhi T, Soderling E. Antimicrobial effects of glass ionomer cements containing bioactive glass (S53p4) on oral micro-organisms in vitro. Acta Odontol Scand. 2003;61:241–6.

    Article  PubMed  Google Scholar 

  • Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res. 2000;79:709–14.

    Article  PubMed  Google Scholar 

  • Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256–74.

    Article  PubMed  Google Scholar 

  • Yuan Y, Yin T, Rong M, Zhang M. Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Exp Polym Lett. 2008;2:238–50.

    Article  Google Scholar 

  • Zalizniak I, Palamara JE, Wong RH, Cochrane NJ, Burrow MF, Reynolds EC. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J Dent. 2013;41:449–54.

    Article  PubMed  Google Scholar 

  • Zhang M, Bando Y, Wada K, Kurashima K. Synthesis of nanotubes and nanowires of silicon oxide. J Mater Sci Lett. 1999;18:1911–3.

    Article  Google Scholar 

  • Zhang L, Tang T, Zhang ZL, Liang B, Wang XM, Fu BP. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning. J Zhejiang Univ Sci B. 2013;14:1013–24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Weng Y, Xie D. In vitro wear and fracture toughness of an experimental light-cured glass–ionomer cement. Dent Mater. 2009;25:526–34.

    Article  PubMed  Google Scholar 

  • Zhou F-L, Gong R-H. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int. 2008;57:837–45.

    Article  Google Scholar 

  • Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig. 2013;17:619–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Cheetham BE, MBA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheetham, J.J. (2016). The Future of Glass-ionomers. In: Sidhu, S. (eds) Glass-Ionomers in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-22626-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22626-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22625-5

  • Online ISBN: 978-3-319-22626-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics