Skip to main content

Physicochemical Nature of Glass-Ionomer-Based Materials and Their Clinical Performance

  • Chapter
Glass-Ionomers in Dentistry

Abstract

This chapter outlines the physical and chemical properties of glass-ionomer (GIC) and resin-modified glass-ionomer cements. The latter part proceeds to summarise various aspects of their clinical performance.

It is noted that these materials are brittle in nature when fully matured or set. Glass-ionomer cements, due to the process of the setting reaction, reach their full strength about 24 h after the initial mixing. The resin-modified materials have an additional hydrophilic resin included that improves early strength and aesthetics but importantly reduces the initial sensitivity to water, allowing early finishing shortly after placement.

Application of a resin coating on the surface of GICs has shown some improvement in the fracture strength, but seems to be material dependent based on current evidence. The improvement in strength is thought to be due to the resin-filling surface defects and cracks where fracture may be initiated. Not all materials or studies have shown consistent outcomes for this coating method. There is limited evidence to suggest that the wear resistance may also be enhanced with the resin coating.

Ion release is also described in this chapter. This part shows that the initial release of ions, in particular fluoride, is high but tapers off to steady low-level release. The clinical benefits are still not well understood.

The latter part of the chapter summarises various aspects of the clinical performance of GICs. Studies of retention in non-carious cervical lesions are described, as well as recent work using the atraumatic restorative treatment (ART) technique. The last part outlines results from fissure sealant studies that tend to show poor retention of GIC sealants. However, even though retention may be limited, it appears that GICs can afford some long-lasting anticariogenic effects to the fissure system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Hamar SE, El-Desouky SS, Abu Hamila AA. Two-year clinical performance in primary teeth of nano-filled versus conventional resin-modified glass-ionomer restorations. Quintessence Int. 2015;46:381–8.

    PubMed  Google Scholar 

  • Akinmade AO, Nicholson JW. Development of glasses for novel polyphosphonate dental cements. Br Ceram T. 1994;93:85–90.

    Google Scholar 

  • Al-Naimi OT, Itota T, Hobson RS, McCabe JF. Fluoride release for restorative materials and its effect on biofilm formation in natural saliva. J Mater Sci Mater Med. 2008;19:1243–8.

    Article  PubMed  Google Scholar 

  • Bagheri R, Tyas MJ, Burrow MF. Comparison of the effect of storage media on hardness and shear punch strength of tooth-colored restorative materials. Am J Dent. 2007;20:329–34.

    PubMed  Google Scholar 

  • Bagheri R, Azar MR, Tyas MJ, Burrow MF. The effect of aging on the fracture toughness of esthetic restorative materials. Am J Dent. 2010;23:142–6.

    PubMed  Google Scholar 

  • Bagheri R, Taha NA, Azar MR, Burrow MF. Effect of G-coat plus on the mechanical properties of glass-ionomer cements. Aust Dent J. 2013;58:448–53.

    Article  PubMed  Google Scholar 

  • Bapna MS, Gadia CM, Drummond JL. Effects of aging and cyclic loading on the mechanical properties of glass ionomer cements. Eur J Oral Sci. 2002;110:330–4.

    Article  PubMed  Google Scholar 

  • Billington RW, Williams JA, Pearson GJ. Ion processes in glass ionomer cements. J Dent. 2006;34:544–55.

    Article  PubMed  Google Scholar 

  • Bonifácio CC, Kleverlaan CJ, Raggio DP, Werner A, de Carvalho RC, van Amerongen WE. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Aust Dent J. 2009;54:233–7.

    Article  PubMed  Google Scholar 

  • Bonifácio CC, Werner A, Kleverlaan CJ. Coating glass-ionomer cements with a nanofilled resin. Acta Odont Scand. 2012;70:417–7.

    Google Scholar 

  • Bonifácio CC, Hesse D, de Oliveira RR, Bönecker M, Raggio DP, van Amerongen WE. Survival rate of approximal-ART restorations using a two-layer technique for glass ionomer insertion. Clin Oral Investig. 2013;17:1745–50.

    Article  PubMed  Google Scholar 

  • Boruziniat A, Gharaei S. Bond strength between composite resin and resin modified glass ionomer using different adhesive systems and curing techniques. J Conserv Dent. 2014;17:150–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brackett WW, Gilpatrick RO, Browning WD, Gregory PN. Two-year clinical performance of a resin-modified glass-ionomer restorative material. Oper Dent. 1999;24:9–13.

    PubMed  Google Scholar 

  • Bresciani E, Barata Tde J, Fagundes TC, Adachi A, Terrin MM, Navarro MF. Compressive and diametral tensile strength of glass ionomer cements. J Appl Oral Sci. 2004;12:344–8.

    Article  PubMed  Google Scholar 

  • Bryant RW, Mahler DB. Volumetric contraction in some tooth-coloured restorative materials. Aust Dent J. 2007;52:112–7.

    Article  PubMed  Google Scholar 

  • Burke FJ, Siddons C, Cripps S, Bardha J, Crisp RJ, Dopheide B. Clinical performance of reinforced glass ionomer restorations placed in UK dental practices. Br Dent J. 2007;203, E2. discussion 40–1.

    Article  PubMed  Google Scholar 

  • Burrow MF, Tyas MJ. Clinical evaluation of a resin-modified glass-ionomer adhesive system. Oper Dent. 1998;23:290–3.

    PubMed  Google Scholar 

  • Burrow MF, Tyas MJ. Clinical evaluation of three adhesive systems for the restoration of non-carious cervical lesions. Oper Dent. 2007;32:11–5.

    Article  PubMed  Google Scholar 

  • Cardoso MV, Delme KIM, Mine A, Neves AA, Coutinho E, De Moor RJG, Van Meerbeek B. Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J Dent. 2010;38:921–9.

    Article  PubMed  Google Scholar 

  • Carey CM, Spencer M, Give RJ, Eichmiller EC. Fluoride release from a resin-modified glass-ionomer cement in a continuous flow system. Effect of pH. J Dent Res. 2003;82:829–32.

    Article  PubMed  Google Scholar 

  • Cattani-Lorente MA, Dupuis V, Payan J, Moya F, Meyer JM. Effect of water on the physical properties of resin-modified glass ionomer cements. Dent Mater. 1999;15:132–7.

    Google Scholar 

  • Cefaly DF, Barata TJ, Tapety CM, Bresciani E, Navarro MF. Clinical evaluation of multisurface ART restorations. J Appl Oral Sci. 2005;13:15–9.

    Article  PubMed  Google Scholar 

  • Chau NP, Pandit S, Cai JN, Lee MH, Jeon JG. Relationship between fluoride release rate and anti-cariogenic biofilm activity of glass ionomer cements. Dent Mater. 2015;31:e100–8.

    Article  PubMed  Google Scholar 

  • Cheetham JJ, Palamara JE, Tyas MJ, Burrow MF. A comparison of resin-modified glass-ionomer and resin composite polymerisation shrinkage stress in a wet environment. J Mech Behav Biomed Mater. 2014;29:33–41.

    Article  PubMed  Google Scholar 

  • Chen XX, Liu XQ. Clinical comparison of Fuji VII and a resin sealant in children at high and low risk of caries. Dent Mater J. 2013;32:512–8.

    Article  PubMed  Google Scholar 

  • Chinelatti MA, Ramos RP, Chimello DT, Palma-Dibb RG. Clinical performance of a resin-modified glass ionomer and two polyacid modified resin composites in cervical lesion restorations; 1-year follow-up. J Oral Rehabil. 2004;31:251–7.

    Article  PubMed  Google Scholar 

  • Cook WD. Degradative analysis of glass ionomer polyelectrolyte cements. J Biomed Mater Res. 1983;17:1015–27.

    Article  PubMed  Google Scholar 

  • Coutinho E, Yoshida Y, Inoue S, Fukuda R, Snauwaert J, Nakayama Y, De Munck J, Lambrechts P, Suzuki K, Van Meerbeek B. Gel phase formation at resin-modified glass ionomer/tooth interfaces. J Dent Res. 2007;86:656–61.

    Article  PubMed  Google Scholar 

  • Crisp S, Wilson AD. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid. J Dent Res. 1976;55:1023–31.

    Article  PubMed  Google Scholar 

  • Crisp S, Lewis BG, Wilson AD. Characterization of glass ionomer cements. 6. A study of erosion and water absorption in both neutral and acidic media. J Dent. 1980;8:68–72.

    Article  PubMed  Google Scholar 

  • Czarnecka B, Nicholson JW. Ion release by resin-modified glass ionomer cements into water and lactic acid solutions. J Dent. 2006;34:539–43.

    Article  PubMed  Google Scholar 

  • de Araujo MA, Araujo RM, Marsilio AL. A retrospective look at esthetic resin composite and glass-ionomer Class III restorations: a 2-year clinical evaluation. Quintessence Int. 1998;29:87–93.

    PubMed  Google Scholar 

  • De Barra E, Hill RG. Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomaterials. 1998;19:495–502.

    Article  PubMed  Google Scholar 

  • De Barra E, Hill RG. Influence of glass composition on the properties of glass polyalkenoate cements. Part III: Influence of fluorite content. Biomaterials. 2000;21:563–9.

    Article  PubMed  Google Scholar 

  • De Caluwé T, Vercruysse CW, Fraeyman S, Verbeeck RM. The influence of particle size and fluorine content on aluminosilicate glass on the glass ionomer cement properties. Dent Mater. 2014;30:1029–38.

    Article  PubMed  Google Scholar 

  • De Moor RJ, Verveeck RM. Effect of acetic acid on the fluoride release profiles of restorative glass ionomer cements. Dent Mater. 1998;14:261–8.

    Article  PubMed  Google Scholar 

  • Dhar V, Chen H. Evaluation of resin based and glass ionomer based sealants placed with or without preparation – a two year clinical trial. Pediatr Dent. 2012;34:46–50.

    PubMed  Google Scholar 

  • Diem VT, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin Oral Invest. 2014;18:753–9.

    Article  Google Scholar 

  • Ermis RB. Two-year clinical evaluation of four polyacid-modified resin composites and a resin-modified glass-ionomer cement in class V lesions. Quintessence Int. 2002;33:542–8.

    PubMed  Google Scholar 

  • Falsafi A, Mitra SB, Oxman JD, Ton TT, Bui HT. Mechanisms of setting reactions and interfacial behaviour of a nano-filled resin-modified glass ionomer. Dent Mater. 2014;30:632–43.

    Article  PubMed  Google Scholar 

  • Fano L, Fano V, Ma W, Wang X, Zhu F. Hydrolytic degradation and cracks in resin-modified glass-ionomer cements. J Biomed Mater Res Part B Appl Biomater. 2004;69:87–93.

    Article  PubMed  Google Scholar 

  • Fennel B, Hill RG. The influence of poly(acrylic) acid molar mass and concentration on the properties o polyalkenoate cements. Part I – compressive strength. J Mater Sci. 2001a;36:5193–202.

    Article  Google Scholar 

  • Fennel B, Hill RG. The influence of poly(acrylic) acid molar mass and concentration on the properties of polyalkenoate cements. Part II: young’s modulus and flexural strength. J Mater Sci. 2001b;36:5177–83.

    Article  Google Scholar 

  • Fennel B, Hill RG. The influence of poly(acrylic) acid molar mass and concentration on the properties o polyalkenoate cements. Part III – fracture toughness and toughness. J Mater Sci. 2001c;36:5185–92.

    Article  Google Scholar 

  • Folwaczny M, Loher C, Mehl A, Kunzelmann KH, Hinkel R. Tooth-colored filling materials for the restoration of cervical lesions; a 24-month follow-up study. Oper Dent. 2000;25:251–8.

    PubMed  Google Scholar 

  • Forss H, Seppa I, Lappalainen WR. In vitro abrasion resistance and hardness of glass ionomer cements. Dent Mater. 1991;7:36–9.

    Article  PubMed  Google Scholar 

  • Forsten L. Short- and long-term fluoride release from glass ionomers and other fluoride-containing filling materials in vitro. Scand J Dent Res. 1990;98:179–85.

    PubMed  Google Scholar 

  • Forsten L. Resin-modified glass ionomer cements: fluoride release and uptake. Acta Odont Scand. 1995;53:222–5.

    Article  PubMed  Google Scholar 

  • Forsten L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effects. Biomaterials. 1998;19:503–8.

    Article  PubMed  Google Scholar 

  • Franco EB, Benetti AR, Ishikiriama SK, Santiago SL, Lauris JRP, Jorge MFF, Navarro MFL. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions. Oper Dent. 2006;31:403–8.

    Article  PubMed  Google Scholar 

  • Frankenberger R, Sindel J, Kramer N. Viscous glass-ionomer cements: a new alternative to amalgam in the primary dentition? Quintessence Int. 1997;28:667–76.

    PubMed  Google Scholar 

  • Frencken JE. The ART, approach using glass-ionomers in relation to global oral health care. Dent Mater. 2010;26:1–6.

    Article  PubMed  Google Scholar 

  • Frencken JE. The state-of-the-art of ART sealants. Dent Update. 2014;41:119–20. 122–4.

    PubMed  Google Scholar 

  • Fukuzawa M, Matsuya S, Yamane M. Mechanism of erosion of glass-ionomer cements in acidic buffer solution. J Dent Res. 1987;66:1770–4.

    Article  Google Scholar 

  • Ganesh M, Tandon S. Clinical evaluation of FUJI VII sealant material. J Clin Pediatr Dent. 2006;31:52–7.

    Article  PubMed  Google Scholar 

  • Gemalmaz D, Yoruc B, Ozcab M, Alkumru HN. Effect of early water contact on solubility of glass ionomer luting cements. J Prosthet Dent. 1998;80:474–8.

    Article  PubMed  Google Scholar 

  • Griffin SG, Hill RG. Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio. Biomaterials. 1999;20:1579–86.

    Article  PubMed  Google Scholar 

  • Griffin SG, Hill RG. Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content. Biomaterials. 2000a;21:399–403.

    Article  PubMed  Google Scholar 

  • Griffin SG, Hill RG. Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content. Biomaterials. 2000b;21:693–8.

    Article  PubMed  Google Scholar 

  • Guler C, Yilmaz Y. A two-year clinical evaluation of glass ionomer and ormocer based fissure sealants. J Clin Pediatr Dent. 2013;37:263–7.

    Article  PubMed  Google Scholar 

  • Hadley PC, Milella E, Gerardi C, Hill RG, Billington RW. Distribution of fluoride in glass ionomer determined using SIMS. Biomaterials. 2001;22:1563–9.

    Article  PubMed  Google Scholar 

  • Hamama HH, Burrow MF, Yiu C. Effect of dentine conditioning on adhesion of resin-modified glass ionomer adhesives. Aust Dent J. 2014;59:193–200.

    Article  PubMed  Google Scholar 

  • Hickel R, Manhart J. Longevity of restorations in posterior teeth and reasons for failure. J Adhes Dent. 2001;3:45–64.

    PubMed  Google Scholar 

  • Hilgert LA, de Amorim ZRG, Leal SC, Mulder J, Creugers NHJ, Frencken JE. Is high-viscosity glass-ionomer-cement a successor to amalgam for treating primary molars? Dent Mater. 2014;30:1171–8.

    Article  Google Scholar 

  • Hinoura K, Moore BK, Phillips RW. Influence of dentin surface treatments on the bond strengths of dentin-lining cements. Oper Dent. 1986;11:147–54.

    PubMed  Google Scholar 

  • Holmgren CJ, Lo ECM, Hu D, Wan H. ART restorations and sealants placed in Chinese school children – results after three years. Community Dent Oral Epidemiol. 2000;28:314–20.

    Article  PubMed  Google Scholar 

  • Honório HM, Rios D, Fransisconi LF, Magalhães AC, Machado MA, Buzalaf MA. Effect of prolonged erosive pH cycling on different restorative materials. J Oral Rehabil. 2008;35:947–53.

    Article  PubMed  Google Scholar 

  • Hotta M, Hirukawa H. Abrasion resistance of restorative glass-ionomer cements and a light-cured surface coating. Oper Dent. 1994;19:42–6.

    PubMed  Google Scholar 

  • Hussein TA, Bakar WZ, Ghani ZA, Mohamad D. The assessment of surface roughness and microleakage of eroded tooth-colored dental restorative materials. J Conserv Dent. 2014;17:531–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Invest. 2012;16:489–98.

    Article  Google Scholar 

  • Jordan RA, Hetzel P, Franke M, Markovic L, Gaengler P, Zimmer S. Class III atraumatic restorative treatment (ART) in adults living in West Africa – outcome after 48 months. Community Dent Oral Epidemiol. 2011;39:164–70.

    Article  PubMed  Google Scholar 

  • Joynt RB, Davis EL, Wieczkowski G, Pierce L. Effect of dentinal pretreatment on bond strength between glass-ionomer and dentin. Oper Dent. 1990;15:173–7.

    PubMed  Google Scholar 

  • Jyothi NJ, Annapurna S, Kumar AS, Venugopal P, Jayashankara CM. Clinical evaluation of giomer and resin-modified glass ionomer cement in class V noncarious lesions: An in vivo study. J Conserv Dent. 2011;14:409–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kasraie S, Shokripour M, Safari M. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems. J Conserv Dent. 2013;16:550–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaur H, Nandlal B. Effect of dietary solvents on the strength of nanocomposite, compomer, glass ionomer cement: An in vitro study. J Conserv Dent. 2013;16:527–31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim YG, Hirano S. Setting shrinkage and hygroscopic expansion of resin-modified glass ionomer in experimental cylindrical cavities. Dent Mater J. 1999;18:63–75.

    Article  PubMed  Google Scholar 

  • Kitasako Y, Sasaki Y, Takagi T, Sadr A, Tagami J. Age-specific prevalence of erosive tooth wear by acidic diet and gastroesophageal reflux in Japan. J Dent. 2015;43:418–23.

    Article  PubMed  Google Scholar 

  • Kleverlaan CJ, van Duinen RN, Felizer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater. 2004;20:45–50.

    Article  PubMed  Google Scholar 

  • Konde S, Rais S, Jaiswal D. Clinical evaluation of a new art material: nanoparticulated resin-modified glass ionomer cement. J Int Prev Community Dent. 2012;2:42–7.

    Article  Google Scholar 

  • Kunzelmann KH, Burkle V, Bauer C. Two-body and three-body wear of glass ionomer cements. Int J Paediatr Dent. 2003;13:434–40.

    Article  PubMed  Google Scholar 

  • Lacefield WR, Reindl MC, Retief DH. Tensile bond strength of glass-ionomer cement. J Prosthet Dent. 1985;53:194–8.

    Article  PubMed  Google Scholar 

  • Leirskar J, Nordbø H, Mount GJ, Ngo H. The influence of resin coating on the shear punch strength of a high strength auto-cure glass ionomer. Dent Mater. 2003;19:87–91.

    Article  PubMed  Google Scholar 

  • Liu BY, Xiao Y, Chu CH, Lo EC. Glass ionomer ART sealant and fluoride-releasing resin sealant in fissure caries prevention – results from a randomized clinical trial. BMC Oral Health. 2014;145:54.

    Article  Google Scholar 

  • Lo EC, Holmgren CJ, Hu D, van Palenstein HW. Six-year follow up of atraumatic restorative treatment restorations placed in Chinese school children. Community Dent Oral Epidemiol. 2007;35:387–92.

    Article  PubMed  Google Scholar 

  • Loguercio AD, Reis A, Barbosa AN, Roulet JF. Five-year double-blind randomised clinical evaluation of a resin-modified glass ionomer and a polyacid-modified resin in noncarious cervical lesions. J Adhes Dent. 2003;5:323–32.

    PubMed  Google Scholar 

  • Lohbauer U, Krämer N, Siedschlag G, Schubert EW, Lauerer B, Müller FA, Petschelt A, Ebert J. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating. Am J Dent. 2011;24:124–8.

    PubMed  Google Scholar 

  • Maneenut C, Tyas MJ. Clinical evaluation of resin-modified glass ionomer restorative cements in cervical ‘abrasion’ lesions: One –year results. Quintessence Int. 1995;26:739–43.

    PubMed  Google Scholar 

  • Maneenut C, Sakoolnamarka R, Tyas MJ. The repair of resin-modified glass-ionomer cements. Dent Mater. 2010;26:659–65.

    Article  PubMed  Google Scholar 

  • Markovic DLJ, Petrovic BB, Peric TO. Fluoride content and recharge ability of five glass ionomer dental materials. BMC Oral Health. 2008;8–21.

    Google Scholar 

  • Matis BA, Cochran M, Carlson T. Longevity of glass-ionomer restorative materials: results of a 10-year evaluation. Quintessence Int. 1996;27:373–82.

    PubMed  Google Scholar 

  • Matsuya S, Matsuya Y, Yamamoto Y, Yamane M. Erosion process of glass ionomer cement in organic acids. Dent Mater J. 1984;3:210–9.

    Article  PubMed  Google Scholar 

  • Mazzaoui SA, Burrow MF, Tyas MJ. Fluoride release from glass ionomer cements and resin composites coated with a dentin adhesive. Dent Mater. 2000;16:166–71.

    Article  PubMed  Google Scholar 

  • McCabe JF. Resin-modified glass-ionomers. Biomaterials. 1998;19:521–7.

    Article  PubMed  Google Scholar 

  • Mitchell CA, Douglas WH, Cheng YS. Fracture toughness of conventional, resin-modified and composite luting cements. Dent Mater. 1999;15:7–13.

    Article  PubMed  Google Scholar 

  • Mitsuhashi A, Hanaoka K, Teranaka T. Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater. 2003;19:747–57.

    Article  PubMed  Google Scholar 

  • Molina G, Faulks D, Mazzola I, Mulder J, Frencken JE. One year survival of ART and conventional restorations in patients with disability. BMC Oral Health. 2014;14:49.

    Article  PubMed Central  PubMed  Google Scholar 

  • Momoi Y, Hirosaki K, Kohno A, McCabe JF. In vitro toothbrush-dentifrice abrasion of resin-modified glass ionomers. Dent Mater. 1997;13:82–8.

    Article  PubMed  Google Scholar 

  • Moreau JL, Xu HH. Fluoride releasing restorative materials: effects of pH on mechanical properties and ion release. Dent Mater. 2010;26:e227–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mount GJ. Polyacrylic cements in dentistry. Am J Dent. 1990;3:79–84.

    PubMed  Google Scholar 

  • Mount GJ. Longevity in glass-ionomer restorations: review of a successful technique. Quintessence Int. 1997;28:643–50.

    PubMed  Google Scholar 

  • Mount GJ, Hume WR. Preservation and restoration of tooth structure. 2nd ed. Queensland: Knowledge Boos and Software; 2005.

    Google Scholar 

  • Mount GJ, Makinson OF, Peters MC. The strength of auto-cured and light-cured materials. The shear punch test. Aust Dent J. 1996;41:118–23.

    Article  PubMed  Google Scholar 

  • Mount GJ, Patel C, Makinson OF. Resin modified glass-ionomers: strength, cure depth and translucency. Aust Dent J. 2002;47:339–43.

    Article  PubMed  Google Scholar 

  • Mount GJ, Tyas MJ, Ferracane JI, Nicholson JW, Berg JH, Simonsen RJ, Ngo HC. A revised classification for direct tooth-coloured restorative materials. Quintessence Int. 2009;40:691–7.

    PubMed  Google Scholar 

  • Namgung C, Rho YJ, Jin BH, Lim BS, Cho BH. A retrospective clinical study of cervical restorations: longevity and failure-prognostic variables. Oper Dent. 2013;38:376–856.

    Article  PubMed  Google Scholar 

  • Navimipour EJ, Oskoee SS, Oskoee PA, Bahari M, Rikhtegaran S, Ghojazadeh M. Effect of acid and laser etching on shear bond strength of conventional and resin-modified glass-ionomer cements to composite resin. Lasers Med Sci. 2012;27:305–22.

    Article  PubMed  Google Scholar 

  • Nicholson JW. Chemistry of glass-ionomer cements – a review. Biomaterials. 1998;19:485–94.

    Article  PubMed  Google Scholar 

  • Nicholson JW, Brookman PJ, Lacy OM, Wilson AD. Fourier transform infrared spectroscopic study of the role of tartaric acid in glass ionomer cements. J Dent Res. 1988;67:1451–4.

    Article  PubMed  Google Scholar 

  • Nicholson JW, Aggarwal A, Czarnecka B, Limanowska-Shaw H. The rate of change of pH of lactic acid exposed to glass-ionomer dental cements. Biomaterials. 2000;21:1989–93.

    Article  PubMed  Google Scholar 

  • Nomoto R, Carrick TE, McCabe JF. Suitability of a shear punch for dental restorative materials. Dent Mater. 2001;17:415–21.

    Article  PubMed  Google Scholar 

  • Norman RD, Swartz ML, Phillips RW, Virmani R. A comparison of the intraoral disintegration of three dental cements. J Am Dent Assoc. 1969;78:777–82.

    Article  PubMed  Google Scholar 

  • Oilo G. Early erosion of dental cements Scan. J Dent Res. 1984;92:539–43.

    Google Scholar 

  • Okada K, Tosaki S, Hirota K, Hume WR. Surface hardness change of restorative filling materials stored in saliva. Dent Mater. 2001;17:34–9.

    Article  PubMed  Google Scholar 

  • Özgünaltay G, Önen A. Three-year clinical evaluation of a resin modified glass-ionomer cement and a composite resin in non-carious class V lesions. J Oral Rehabil. 2002;29:1037–41.

    Article  PubMed  Google Scholar 

  • Pamir T, Sen BH, Evcin O. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements. J Appl Oral Sci. 2012;20:636–42.

    PubMed Central  PubMed  Google Scholar 

  • Patel M, Tawfik H, Myint Y, Brocklehurst D, Nicholson JW. Factors affecting the ability of dental cements to alter pH of lactic acid solutions. J Oral Rehabil. 2000;27:1030–3.

    Article  PubMed  Google Scholar 

  • Pelka M, Ebert J, Schneider H, Kramer N, Petschelt A. A comparison of two- and three-body wear of glass ionomers and composites. Eur J Oral Sci. 1996;104:132–7.

    Article  PubMed  Google Scholar 

  • Perdigão J, Dutra-Corrêa M, Saraceni SHC, Ciaramicoli MT, Kiyan VH. Randomised clinical trial of two resin-modified glass ionomer materials: 1-year results. Oper Dent. 2012;37:591–601.

    Article  PubMed  Google Scholar 

  • Pereira AC, Pardi V, Mialhe FL, Meneghim Mde C, Ambrosano GM. A 3-year clinical evaluation of glass-ionomer cements used as fissure sealants. Am J Dent. 2003;16:23–7.

    PubMed  Google Scholar 

  • Peumans M, Kanumulli P, De Munck J, Van Landuyt P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: a systematic review. Dent Mater. 2005;21:864–81.

    Article  PubMed  Google Scholar 

  • Peumans M, De Munck J, Mine A, Van Meerbeek B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater. 2014;30:1089–103.

    Article  PubMed  Google Scholar 

  • Peutzfeldt A, Garcia-Godoy F, Asmussen E. Surface hardness and wear of glass ionomers and compomers. Am J Dent. 1997;10:15–7.

    PubMed  Google Scholar 

  • Prentice LH. Investigations into the mechanical properties and curing characteristics of dental glass-ionomer cements. PhD thesis, University of Melbourne; 2005.

    Google Scholar 

  • Prosser HJ, Jerome SM, Wilson AD. The effect of additive on the setting properties of a glass-ionomer cement. J Dent Res. 1982a;61:1195–8.

    Article  PubMed  Google Scholar 

  • Prosser HJ, Richards CP, Wilson AD. NMR spectroscopy of dental materials. II. The role of tartaric acid in glass-ionomer cements. J Biomed Mater Res. 1982b;16:431–45.

    Article  PubMed  Google Scholar 

  • Randall RC, Wilson NH. Glass-ionomer restoratives: a systematic review of secondary caries treatment effect. J Dent Res. 1999;78:628–37.

    Article  PubMed  Google Scholar 

  • Roberts HW, Berzins DW, Charlton DG. Hardness of three resin-modified glass-ionomer restorative materials as a function of depth and time. J Esthet Restor Dent. 2009;21:262–72.

    Article  PubMed  Google Scholar 

  • Santiago SL, Passos VF, Vieira AH, Navarro MF, Lauris JR, Franco EB. Two-year clinical evaluation of resinous restorative systems in non-carious cervical lesions. Braz Dent J. 2010;21:229–34.

    PubMed  Google Scholar 

  • Scholtanus JD, Huysmans MC. Clinical failure of class-II restorations of a highly viscous glass-ionomer material over a 6-year period: a retrospective study. J Dent. 2007;35:156–62.

    Article  PubMed  Google Scholar 

  • Schwieger M, Groning P, Schlapbach L, Höland W, Rheinberger V. Thermal and chemical properties of a glass in the SiO2-CaOF system for dental applications. J Therm Anal Calorim. 2000;60:1009–18.

    Article  Google Scholar 

  • Shiiya T, Mukai Y, Ten Cate JM, Teranaka T. The caries-reducing benefit of fluoride-release from dental restorative materials after fluoride release has ended. Acta Odontol Scand. 2012;70:15–20.

    Article  PubMed  Google Scholar 

  • Shin-ichi K, Atsuhiro T, Michiko H. GC Dental Ind Corp, assignee. Glass powder for dental glass ionomer cement. US Patent 6136737. 2000.

    Google Scholar 

  • Shiozawa M, Takahashi H, Iwasaki N. Fluoride release and mechanical properties after 1-year storage of recent restorative glass ionomer cements. Clin Oral Investig. 2014;18:1053–60.

    Article  PubMed  Google Scholar 

  • Sidhu SK. Clinical evaluations of resin-modified glass-ionomer restorations. Dent Mater. 2010;26:7–12.

    Article  PubMed  Google Scholar 

  • Sidhu SK, Watson TF. Interfacial characteristics of resin-modified glass-ionomer materials: a study on fluid permeability using confocal fluorescence microscopy. J Dent Res. 1998;77:1749–59.

    Article  PubMed  Google Scholar 

  • Small ICB, Watson TF, Chadwick AV, Sidhu SK. Water sorption in resin-modified glass-ionomer cements – an in vitro comparison with other materials. Biomaterials. 1998;19:545–50.

    Article  PubMed  Google Scholar 

  • Smith DC. Development of glass- ionomer cement systems. Biomaterials. 1998;19:467–78.

    Article  PubMed  Google Scholar 

  • Soares LE, Lima LR, Vieira LS, Do Espírito Santo AM, Martin AA. Erosion effects on chemical composition and morphology of dental materials and root dentin. Microsc Res Tech. 2012;75:703–10.

    Article  PubMed  Google Scholar 

  • SunnegÃ¥rdh-Grönberg K, Peutzfeldt A, van Dijken JW. Hardness and in vitro wear of a novel ceramic restorative cement. Eur J Oral Sci. 2002;110:175–8.

    Article  PubMed  Google Scholar 

  • Tanumiharja M, Burrow MF, Cimmino A, Tyas MJ. The evaluation of four conditioners for glass ionomer cements using field-emission scanning electron microscopy. J Dent. 2001;29:131–8.

    Article  PubMed  Google Scholar 

  • Tay FR, Smales RJ, Ngo H, Wei SH, Pashley DH. Effect of different conditioning protocols on adhesion of a GIC to dentin. J Adhes Dent. 2001;3:153–67.

    PubMed  Google Scholar 

  • Tyas MJ. The effect of dentine conditioning with polyacrylic acid on the clinical performance of glass ionomer cement. Aust Dent J. 1993;38:46–8.

    Article  PubMed  Google Scholar 

  • van Dijken JW. Four-year evaluation of the effect of 10% polyacrylic acid or water rinsing treatment on retention of glass polyalkenoate cement. Eur J Oral Sci. 1996a;104:64–6.

    Article  PubMed  Google Scholar 

  • van Dijken JW. 3-year clinical evaluation of a compomer, a resin-modified glass ionomer and a resin composite in Class III restorations. Am J Dent. 1996b;9:195–8.

    PubMed  Google Scholar 

  • van Dijken JW, Pallesen U. Long-term retention of etch-and-rinse and self-etch adhesives and a resin-modified glass ionomer cement in non-carious cervical lesions. Dent Mater. 2008;24:915–22.

    Article  PubMed  Google Scholar 

  • van Dijken JW, Kieri C, Carlén M. Longevity of extensive class II open-sandwich restorations with a resin-modified glass-ionomer cement. J Dent Res. 1999;78:1319–25.

    Article  PubMed  Google Scholar 

  • Wang XY, Yap AU, Ngo HC. Effect of early water exposure on the strength of glass ionomer restoratives. Oper Dent. 2006;31:584–9.

    Article  PubMed  Google Scholar 

  • Watson TF. A confocal microscope study of some factors affecting adaptation of a light-cured glass ionomer to tooth tissue. J Dent Res. 1990;69:1531–8.

    Article  PubMed  Google Scholar 

  • Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry; biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30:50–61.

    Article  PubMed Central  PubMed  Google Scholar 

  • Welch D, Seesengood B, Hopp C. Surface treatments that demonstrate a significant positive effect on the shear bond strength of repaired resin-modified glass ionomer. Oper Dent. 2015;40:403–9.

    Google Scholar 

  • Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials – fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23:343–62.

    Article  PubMed  Google Scholar 

  • Wilson AD, McLean JW. Glass-ionomer cement. Chicago: Quintessence Publishing; 1988.

    Google Scholar 

  • Wilson AD, Crisp S, Ferner AJ. Reactions in glass-ionomer cements: IV. Effect of chelating comonomers on setting behavior. J Dent Res. 1976;55:489–95.

    Article  PubMed  Google Scholar 

  • Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass ionomer cements. Dent Mater. 2000;16:129–38.

    Article  PubMed  Google Scholar 

  • Xu X, Burgess JO. Compressive strength, fluoride release and recharge of fluoride releasing materials. Biomaterials. 2003;2451–61.

    Google Scholar 

  • Yip KH, Smales RJ, Gaol W, Peng D. The effects of two cavity preparation methods on the longevity of glass ionomer restorations: an evaluation after 12 months. J Am Dent Assoc. 2002;133:744–51.

    Article  PubMed  Google Scholar 

  • Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res. 2000;79:709–14.

    Article  PubMed  Google Scholar 

  • Young AM, Sherpa A, Pearson G, Schottlander B, Waters DN. Use of Raman spectroscopy in the characterisation of the acid–base reaction in glass-ionomer cements. Biomaterials. 2000;21:1971–9.

    Article  PubMed  Google Scholar 

  • Zalizniak I, Palamara JE, Wong RH, Cochrane NJ, Burrow MF, Reynolds EC. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J Dent. 2013;41:449–54.

    Article  PubMed  Google Scholar 

  • Zanata RL, Magalhães AC, Lauris JR, Atta MT, Wang L, Navarro MF. Microhardness and chemical analysis of high-viscous glass-ionomer cement after 10 years of clinical service as ART restorations. J Dent. 2011;39:834–40.

    Article  PubMed  Google Scholar 

  • Zhang Y, Burrow MF, Palamara JE, Thomas CDL. Bonding to glass ionomer cements using resin-based adhesives. Oper Dent. 2011;36:618–25.

    Article  PubMed  Google Scholar 

  • Zimehl R, Hannig M. Non metallic restorative materials based on glass ionomer cements – recent trends and developments. Colloid Surf A. 2000;163:55–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Burrow BDS, MDS, PhD, DDSc, MEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burrow, M.F. (2016). Physicochemical Nature of Glass-Ionomer-Based Materials and Their Clinical Performance. In: Sidhu, S. (eds) Glass-Ionomers in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-22626-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22626-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22625-5

  • Online ISBN: 978-3-319-22626-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics