Skip to main content

The History and Background to Glass-Ionomer Dental Cements

  • Chapter
Glass-Ionomers in Dentistry

Abstract

This chapter provides a historical perspective and an insight into how the glass-ionomer cement was invented following a long series of studies on dental cements, beginning with the now obsolete dental silicate cement. It reviews the experiments on the predecessor materials and also the early studies of the glass-ionomer dental cement. Glass-ionomer cements emerged from research on the former dental silicate cement and the zinc polycarboxylate cement. Dental silicates were poorly understood materials in the early 1960s when studies were started at the Laboratory of the Government Chemist in the UK. These studies showed for the first time that dental silicates were acid–base materials that set to form a matrix of metal phosphates containing unreacted glass filler. From this, the role of the glass was understood for the first time and, in particular, the importance of its alumina/silica ratio in controlling basicity. Following this discovery, the means of producing a practical glass-polyacrylate dental cement was clear and was achieved by altering the alumina/silica ratio of the glass to increase its basicity and balance the reduced acidity of the poly(acrylic acid). The original glass capable of forming a practical cement, known as G200, was high in fluoride and hence fairly opaque compared with modern ionomer glasses. Consideration of the role of fluoride led to the concept of chelating additives to control the setting reaction which led to the discovery of the effect of tartaric acid. This allowed glass-ionomer cements of good translucency for clinical use to be developed. These inventions led on to the pioneering work described in this chapter in which the setting reactions were elucidated, the role of water established, the release of fluoride studied and the factors affecting strength determined. This knowledge informed early ideas of how these materials might be used in dentistry, and the chapter concludes with a review of these early clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboush YEY, Jenkins CBG. An evaluation of the bonding of glass-ionomer restoratives to dentine and enamel. Br Dent J. 1986;161:179–84.

    Article  PubMed  Google Scholar 

  • Akitt JW. Multinuclear studies of aluminium compounds. Prog Nucl Magnet Spectr. 1989;21:1–149.

    Article  Google Scholar 

  • Asmussen E. Opacity of glass-ionomer cements. Acta Odont Scand. 1983;41:155–7.

    Article  PubMed  Google Scholar 

  • Barry TI, Clinton DJ, Wilson AD. The structure of a glass ionomer cement and its relationship to the setting process. J Dent Res. 1979;58:1072–9.

    Article  PubMed  Google Scholar 

  • Beagrie GS, Main JHP, Smith DC. Inflammatory reaction evoked by zinc polyacrylate and zinc eugenolate cements: a comparison. Br Dent J. 1972;132:351–7.

    Article  PubMed  Google Scholar 

  • Beech DR. Improvement in the adhesion of polyacrylate cements to human dentine. Br Dent J. 1973;135:442–5.

    Article  PubMed  Google Scholar 

  • Bertenshaw BW, Combe EC. Studies on polycarboxylates and related cements. I. Analysis of cement liquids. J Dent. 1972;1:13–6.

    Article  PubMed  Google Scholar 

  • Bertenshaw BW, Combe EC. Studies on polycarboxylates and related cements. III. Molecular weight determination. J Dent. 1976;4:87–90.

    Article  PubMed  Google Scholar 

  • Brannstrom M. Pretreatment before the placement of restorations. In: Dentine and pulp in restorative dentistry. Nacka: Dental Therapeutics; 1981. p. 93.

    Google Scholar 

  • Brune D, Smith D. Microstructure and strength properties of silicate and glass ionomer cements. Acta Odontol Scand. 1982;40:389–96.

    Article  PubMed  Google Scholar 

  • Causton BE. The physico-mechanical consequences of exposing glass ionomer cements to water during setting. Biomaterials. 1981;2:112–5.

    Article  PubMed  Google Scholar 

  • Charbeneau GT, Bozell RR. Clinical valuation of a glass ionomer cement for restoring of cervical erosion. J Dent Res. 1979;98:936–9.

    Google Scholar 

  • Connick RE, Poulsen RE. Nuclear magnetic resonance studies of aluminium fluoride complexes. J Am Chem Soc. 1957;79:5152–7.

    Article  Google Scholar 

  • Crisp S, Wilson AD. Reactions in glass ionomer cements. I. Decomposition of the powder. J Dent Res. 1974a;53:1408–13.

    Article  PubMed  Google Scholar 

  • Crisp S, Wilson AD. Reactions in glass ionomer cements. III. The precipitation reaction. J Dent Res. 1974b;53:1420–4.

    Article  PubMed  Google Scholar 

  • Crisp S, Wilson AD. Reactions in glass ionomer cements. V. Effect of incorporating tartaric acid in the cement liquid. J Dent Res. 1976;55:1023–31.

    Article  PubMed  Google Scholar 

  • Crisp S, Pringuer MA, Wardleworth D, Wilson AD. Reactions in glass ionomer cements. II. An infrared spectroscopic study. J Dent Res. 1974;53:1414–9.

    Article  PubMed  Google Scholar 

  • Crisp S, Ferner AJ, Lewis BG, Wilson AD. Properties of improved glass ionomer cement formulations. J Dent. 1975;3:125–30.

    Article  PubMed  Google Scholar 

  • Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 1. Long-term hardness and compressive strength. J Dent. 1976a;4:162–6.

    Article  PubMed  Google Scholar 

  • Crisp S, Lewis BG, Wilson AD. Glass ionomer cements: chemistry of erosion. J Dent Res. 1976b;55:1032–41.

    Article  PubMed  Google Scholar 

  • Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 3. Effect of polyacid concentration on the physical properties. J Dent. 1977;5:51–6.

    Article  PubMed  Google Scholar 

  • Crisp S, Abel G, Wilson AD. The quantitative measurement of the opacity of aesthetic dental filling materials. J Dent Res. 1979;58:1585–96.

    Article  PubMed  Google Scholar 

  • Crisp S, Kent BE, Lewis BG, Ferner AJ, Wilson AD. Glass ionomer cement formulations. II. The synthesis of novel polycarboxylic acids. J Dent Res. 1980a;59:1055–63.

    Article  PubMed  Google Scholar 

  • Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 6. A study of erosion and water absorption in both neutral and acidic media. J Dent. 1980b;8:68–74.

    Article  PubMed  Google Scholar 

  • Dahl BL, Tronstad L. Biological tests of an experimental glass ionomer (silicopolyacrylate) cement. J Oral Rehabil. 1976;55:1032–41.

    Google Scholar 

  • De Witte AM, De Maeyer EA, Verbeeck RMH, Martens LC. Fluoride release profiles of mature restorative glass ionomer cements after fluoride application. Biomaterials. 2000;21:475–82.

    Article  PubMed  Google Scholar 

  • Dollimore D, Spooner P. Sintering studies on zinc oxide. Trans Faraday Soc. 1971;67:2750–9.

    Article  Google Scholar 

  • Earl MSA, Ibbetson RJ. The clinical disintegration of a glass-ionomer cement. Br Dent J. 1986;161:287–91.

    Article  PubMed  Google Scholar 

  • Earl MSA, Hume WR, Mount GJ. Effect of varnishes and other surface treatments on water movement across the glass-ionomer cement surface. Aust Dent J. 1985;30:298–301.

    Article  PubMed  Google Scholar 

  • Elliot J, Holliday L, Hornsby PR. Physical and mechanical properties of glass-ionomer cements. Br Polym J. 1975;7:297–306.

    Article  Google Scholar 

  • Enderby JE, Nielson GW. The coordination of metal ions. In: Sykes AG, editor. Advances in inorganic chemistry, vol. 34. San Diego: Academic Press; 1989. p. 195–218.

    Google Scholar 

  • Fleck H. The chemistry of oxyphosphate. Dent Items Interest. 1902:906–935, cited in Wilson [1].

    Google Scholar 

  • Forsten L. Fluoride release from a glass ionomer cement. Scand J Dent Res. 1977;85:503–4.

    PubMed  Google Scholar 

  • Forsten L. Short- and long-term fluoride release from glass ionomers. Scand J Dent Res. 1991;99:241–5.

    PubMed  Google Scholar 

  • Foster JF, Dovey EH. Surgical cements of improved compressive strength containing stannous fluoride and polyacrylic acid. US Patent 3,856,737. 1974, cited in Wilson and Nicholson [14].

    Google Scholar 

  • Guggenberger R, May R, Stephan KP. New trends in glass ionomer chemistry. Biomaterials. 1998;19:479–83.

    Article  PubMed  Google Scholar 

  • Guida A, Towler MR, Wall JG, Hill RG, Eramo S. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22:1401–3.

    Article  Google Scholar 

  • Hammond PW, Egan H. Weighed in the balance – a history of the laboratory of the government chemist. London: HMSO; 1992.

    Google Scholar 

  • Hara M, editor. Polyelectrolytes. New York: Marcel Dekker; 1993.

    Google Scholar 

  • Hembree JH, Andrews JT. Microleakage of several class V anterior restorative materials. J Am Dent Assoc. 1978;97:179–83.

    Article  PubMed  Google Scholar 

  • Hicks MJ, Flaitz CM, Silverstone LM. Secondary caries formation in vitro around glass ionomer restorations. Quintessence Int. 1986;17:527–32.

    PubMed  Google Scholar 

  • Hien-Chi N, Mount G, McIntyre J, Tuisuva J, Von Doussa RJ. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006;34:608–13.

    Article  Google Scholar 

  • Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J. 2011;56 Suppl 1:67–76.

    Article  PubMed  Google Scholar 

  • Hill RG, Wilson AD. Some structural aspects of glasses used in ionomer cements. Glass Technol. 1988;29:150–88.

    Google Scholar 

  • Hornsby PR. Dimensional stability of glass-ionomer cements. J Chem Tech Biotechnol. 1980;30:595–601.

    Article  Google Scholar 

  • Hotz P, McLean JW, Sced I, Wilson AD. The bonding of glass ionomer cements to metal and tooth substrates. Br Dent J. 1977;142:41–7.

    Article  PubMed  Google Scholar 

  • Iler RK. The polymerization of silica, chapters 3 and 6. In: The chemistry of silica. New York: Wiley-Interscience; 1979.

    Google Scholar 

  • International Organization for Standardization (ISO). International standard for glass polyalkenoate cements. 1986. ISO7486.

    Google Scholar 

  • Jorgensen KD. On the solubility of dental silicate cements. Acta Odont Scand. 1963;21:141–58.

    Article  PubMed  Google Scholar 

  • Kakaboura A, Vougiouklakis G. Cements in orthodontics, Ch 11. In: Brantley W, Eliades G, editors. Orthodontic materials – scientific and clinical aspects. Stuttgart: Thieme; 2001.

    Google Scholar 

  • Kawahara H, Imanashi Y, Oshima H. Biological evaluation of glass-ionomer cements. J Dent Res. 1979;58:1080–6.

    Article  PubMed  Google Scholar 

  • Kent BE, Wilson AD. Dental silicate cements VIII. Acid–base aspect. J Dent Res. 1969;48:412–8.

    Article  PubMed  Google Scholar 

  • Kent BE, Fletcher KE, Wilson AD. Dental silicate cements, XI. Electron probe studies. J Dent Res. 1970;49:86–92.

    Article  PubMed  Google Scholar 

  • Kent BE, Lewis BG, Wilson AD. The properties of a glass-ionomer cement. Br Dent J. 1973;135:322–6.

    Article  PubMed  Google Scholar 

  • Kent BE, Lewis BG, Wilson AD. Glass ionomer formulations. I. The preparation of novel fluoroaluminosilicate glasses high in fluorine. J Dent Res. 1979;58:1607–19.

    Article  PubMed  Google Scholar 

  • Kidd EAM. Cavity sealing ability of composite resin and glass ionomer restorations: an assessment in vitro. Br Dent J. 1978;144:139–42.

    Article  PubMed  Google Scholar 

  • Knibbs PJ, Plant CG, Pearson GJ. The use of a glass ionomer to restore Class III cavities. Rest Dent. 1986;2:42–8.

    Google Scholar 

  • Kovarick RE. Restoration of posterior teeth in clinical practice: evidence base for choosing amalgam versus composite. Dent Clin North Am. 2009;53:71–6.

    Article  Google Scholar 

  • Kuhn AT, Setchell DJ, Teo CK. An assessment of the jet method for solubility measurements of dental cements. Biomaterials. 1984;5:161–8.

    Article  PubMed  Google Scholar 

  • Lawrence LG. Cervical glass ionomer restorations: a clinical study. J Can Dent Assoc. 1979;45:58, 59, 62.

    Google Scholar 

  • Levine RS, Beech DR, Garton B. Improving bond strength of polyacrylate cements to dentine. Br Dent J. 1977;143:275–7.

    Google Scholar 

  • Long TE, Duke ES, Norling BK. Polyacrylic acid cleaning of dentin and glass ionomer bond strengths. J Dent Res. 1986;65(Special issue):345, Abstract 1583.

    Google Scholar 

  • Lowenstein W. The distribution of aluminium in the tetrahedral of silicates and aluminates. Am Mineralog. 1954;39:92–6.

    Google Scholar 

  • Lundall GEF, Hoffman JI. Outlines of methods of chemical analysis, Ch XIIC. New York: Wiley; 1938.

    Google Scholar 

  • Maldonado A, Swartz ML, Phillips RW. An in vitro study of certain properties of a glass-ionomer cement. J Am Dent Assoc. 1978;96:785–91.

    Article  PubMed  Google Scholar 

  • McComb D. retention of castings with glass ionomer cements. J Prosthet Dent. 1982;48:285–8.

    Article  PubMed  Google Scholar 

  • McLean JW, Wilson AD. Fissure sealing and filling with an adhesive glass-ionomer cement. Br Dent J. 1974;136:269–76.

    Article  PubMed  Google Scholar 

  • McLean JW, Wilson AD. The clinical development of the glass-ionomer cement. II. Some clinical applications. Aust Dent J. 1977a;22:120–7.

    Article  PubMed  Google Scholar 

  • McLean JW, Wilson AD. The clinical development of the glass-ionomer cement. III. The erosion lesion. Aust Dent J. 1977b;22:190–5.

    Article  PubMed  Google Scholar 

  • McLean JW, Wilson AD. The clinical development of the glass-ionomer cement. I. Formulations and properties. Aust Dent J. 1977c;22:31–6.

    Article  PubMed  Google Scholar 

  • Meryon SD, Stephens PG, Browne RM. A comparison of the in vitro cytotoxicity of two glass ionomer cements. J Dent Res. 1983;62:769–73.

    Article  PubMed  Google Scholar 

  • Mizrahi E, Smith DC. Direct cementation of orthodontic brackets to dental enamel. An investigation using zinc polycarboxylate cement. Br Dent J. 1969;127:371–410.

    PubMed  Google Scholar 

  • Mount GJ, Hume WR. Preservation and restoration of tooth structure. 2nd ed. Sandgate: Knowledge Books and Software; 2005.

    Google Scholar 

  • Mount GJ, Makinson OF. Glass-ionomer restorative cements: clinical implications of the setting reaction. Oper Dent. 1982;7:134–41.

    PubMed  Google Scholar 

  • Ngo HG, Mount GJ, Peters MCRB. A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique. Quintessence Int. 1997;28:63–9.

    PubMed  Google Scholar 

  • Nicholson JW. An infrared spectroscopic study of the interaction of metal salts with an acrylic acid/maleic acid copolymer. J Appl Polym Sci. 2000;78:1680–4.

    Article  Google Scholar 

  • Nicholson JW, Brookman PJ, Lacy OM, Wilson AD. Fourier transform infrared spectroscopic study of the role of tartaric acid in glass-ionomer cement. J Dent Res. 1988;76:1451–4.

    Article  Google Scholar 

  • Norman RD, Swartz MP, Phillips RW. Studies on the solubility of certain dental materials. J Dent Res. 1957;36:977–85.

    Article  PubMed  Google Scholar 

  • Norman RD, Swartz MP, Phillips RW. Additional studies on the solubility of certain dental materials. J Dent Res. 1959;38:1025–37.

    Google Scholar 

  • O’Reilly DE. NMR chemical shifts of aluminium: experimental data and variational calculations. J Chem Phys. 1960;32:1007–12.

    Article  Google Scholar 

  • Oliva A. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials. 1998;17:1351–6.

    Article  Google Scholar 

  • Osborne JW, Swartz ML, Goodacre CJ, Pillips RW, Gale EM. A method for assessing the clinical solubility and disintegration of luting cements. J Prosthet Dent. 1978;40:413–7.

    Article  PubMed  Google Scholar 

  • Paddon JM, Wilson AD. Stress relaxation studies on dental materials. I. Dental cements. J Dent. 1976;4:183–9.

    Article  PubMed  Google Scholar 

  • Paffenbarger GC, Sweeney SJ, Isaacs A. A preliminary report on zinc phosphate cements. J Am Dent Assoc. 1933;20:1960–82.

    Google Scholar 

  • Paffenbarger GC, Schoonover IC, Souder W. Dental silicate cements: physical and chemical properties and a specification. J Am Dent Assoc. 1938;25:32–87.

    Google Scholar 

  • Phillips S, Bishop BM. An in vitro study of the effect of moisture on glass ionomer cement. Quintessence Int. 1985;16:175–7.

    PubMed  Google Scholar 

  • Pierce CN. Filling materials of oxide of zinc and glacial phosphoric acid. Dent Cosmos. 1879;21:696, cited in Wilson [1].

    Google Scholar 

  • Plant CG. The effect of polycarboxylate containing stannous fluoride on the pulp. Br Dent J. 1970;135:317–21.

    Article  Google Scholar 

  • Plant CG, Shovelton DS, Vliestra JR, Wartnaby JM. The use of a glass ionomer cement in deciduous teeth. Br Dent J. 1977;143:271–4.

    Article  PubMed  Google Scholar 

  • Powis DR. Unpublished report. 1986, cited in Wilson and McLean [68].

    Google Scholar 

  • Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.

    Google Scholar 

  • Prodger TE, Symonds M. ASPA adhesion study. Br Dent J. 1977;143:266–70.

    Article  PubMed  Google Scholar 

  • Prosser HJ, Richards CP, Wilson AD. NMR spectroscopy of dental materials. II. The role of tartaric acid in glass-ionomer cements. J Biomed Mater Res. 1982;16:431–43.

    Article  PubMed  Google Scholar 

  • Prosser HJ, Powis DR, Brant PJ, Wilson AD. Characterisation of glass-ionomer cements. 7. The physical properties of current materials. J Dent. 1984;12:231–40.

    Article  PubMed  Google Scholar 

  • Prosser HJ, Powis DR, Wilson AD. Glass-ionomer cements of improved flexural strength. J Dent Res. 1986;65:146–8.

    Article  PubMed  Google Scholar 

  • Ray KW. The behaviour of siliceous cements. J Am Dent Assoc. 1934;21:237–51.

    Google Scholar 

  • Reisbick MH. Working qualities of glass ionomer cements. J Prosthet Dent. 1981;46:525–30.

    Article  PubMed  Google Scholar 

  • Robinson AD. The life of a filling. Br Dent J. 1971;130:206–8.

    Article  PubMed  Google Scholar 

  • Saito S. Characteristics of glass ionomer and its clinical application. 1. Relations between hardening reactions and water. Int J Dent Mater. 1978;8:1–16.

    Google Scholar 

  • Schmidt W, Purrman R, Jochum P, Gasser O. Mixing compounds for glass-ionomer cements and use of a copolymer for preparing mixing components. Eur Pat App 24, 056. 1981, cited in Wilson and McLean [68].

    Google Scholar 

  • Schoenbeck F. Process for the production of tooth material. US Patent N 897 160. 1980, cited in Wilson [1].

    Google Scholar 

  • Skinner EW, Phillips RW. The science of dental materials. 5th ed. Philadelphia/London: W. B. Saunders; 1960.

    Google Scholar 

  • Smales RJ. Clinical using of ASPA glass-ionomer cement. Br Dent J. 1981;151:58–60.

    Article  PubMed  Google Scholar 

  • Smith DC. A new dental cement. Br Dent J. 1968;125:381–4.

    Google Scholar 

  • Smith DC. A review of the zinc polycarboxylate cements. J Can Dent Assoc. 1971;37:22–9.

    PubMed  Google Scholar 

  • Smith DC. Composition and characteristics of dental cements, Ch 8. In: Smith DC, Williams DF, editors. Biocompatibility of dental materials, Biocompatibility of preventive dental materials and bonding agents, vol. II. Boca Raton: CRC Press; 1982.

    Google Scholar 

  • Sorel S. Procedure for the formation of a very solid cement by the action of chloride on the oxide of zinc. C R Hebd Seances Acad Sci. 1855;41:784–5, cited in Wilson [1].

    Google Scholar 

  • Steenbock P. Improvements in and relating to the manufacture of a material designed for the production of cement. Br Patent 174,558. 1904, cited in Wilson [1].

    Google Scholar 

  • Stralfors A, Eriksson SE. The rate of dissolution of dental silicate cement. Odont Tidskrift. 1969;77:185–210.

    Google Scholar 

  • Tarutani T. Polymerization of silicic acid: a review. Anal Sci. 1989;5:245–52.

    Article  Google Scholar 

  • Tay WM, Braden M. Fluoride ion diffusion from polyalkenoate (glass-ionomer) cements. Biomaterials. 1988;9:454–9.

    Article  PubMed  Google Scholar 

  • Tay WM, Morrant GA, Borlace HR, Bultitude FW. An assessment of anterior restorations in vivo using the scanning electron microscope. Results after one year. Br Dent J. 1974;137:463–71.

    Article  PubMed  Google Scholar 

  • Tay WM, Cooper IR, Morrant GA, Borlace HR, Bultitude FW. An assessment of anterior restorations in vivo using the scanning electron microscope. Results after three years. Br Dent J. 1979;146:71–6.

    Article  PubMed  Google Scholar 

  • ten Cate JM, Buijs MJ, Miller CC, Exterkate RA. Elevated fluoride products enhance mineralisation of advanced enamel lesions. J Dent Res. 2008;87:943–7.

    Article  PubMed  Google Scholar 

  • Turner D, Czarnecka B, Nicholson JW. The interaction of stannous fluoride with synthetic hydroxyapatite: modelling the anticaries effect. Ceram Silik. 2013;57:1–6.

    Google Scholar 

  • Vliestra JR, Plant CG, Sovelton DS, Bradnock G. The use of glass ionomer cement in deciduous teeth. Br Dent J. 1978;145:164–6.

    Article  Google Scholar 

  • Voelker CC. Dental silicate cements in theory and practice. Dent Cosmos. 1916;36:1098–111, cited in Wilson [1].

    Google Scholar 

  • Wasson EA, Nicholson JW. Studies on the setting of glass ionomer cements. Clin Mater. 1991;7:289–93.

    Google Scholar 

  • Watts DC, Combe EC, Greener EH. Effect of storage conditions on the mechanical properties of polyelectrolyte cements. J Dent Res. 1979;58(Special issue C), Abstract No 18.

    Google Scholar 

  • Wilson AD. Dental silicate cements VIII. Alternative liquid cement formers. J Dent Res. 1968;47:1133–6.

    Article  PubMed  Google Scholar 

  • Wilson AD. Alumino-silicate polyacrylic acid cement. Br Polym J. 1974;6:165–79.

    Article  Google Scholar 

  • Wilson AD. The chemistry of dental cements. Chem Soc Rev. 1978;7:265–96.

    Article  Google Scholar 

  • Wilson AD. A hard decade’s work: steps in the invention of the glass-ionomer cement. J Dent Res. 1996a;75:1723–7.

    Article  PubMed  Google Scholar 

  • Wilson AD. Acidobasicity of oxide glasses used in glass ionomer cements. Dent Mater. 1996b;12:25–9.

    Article  PubMed  Google Scholar 

  • Wilson AD. A survey of dental practice in the use of silicate cements. Ministry of Technology Report. Br Dent J. 1969;127:7 (abstract).

    Google Scholar 

  • Wilson AD, Batchelor RF. Dental silicate cements I. The chemistry of erosion. J Dent Res. 1967a;46:1075–85.

    Article  PubMed  Google Scholar 

  • Wilson AD, Batchelor RF. Dental silicate cements, II. Preparation and durability. J Dent Res. 1967b;46:1425–32.

    Article  PubMed  Google Scholar 

  • Wilson AD, Batchelor RF. Dental silicate cements III. Environment and durability. J Dent Res. 1968;47:115–20.

    Article  Google Scholar 

  • Wilson AD, Crisp S. Ionomer cements. Br Polym J. 1975;7:279–96.

    Article  Google Scholar 

  • Wilson AD, Kent BE. Dental silicate cements, V. Electrical conductivity. J Dent Res. 1968;47:463–70.

    Article  PubMed  Google Scholar 

  • Wilson AD, Kent BE. The glass-ionomer cement, a new translucent cement for dentistry. J Appl Chem Biotechnol. 1971;21:313.

    Article  Google Scholar 

  • Wilson AD, Lewis BG. The flow properties of dental cements. J Biomed Mater Res. 1980;14:383–91.

    Article  PubMed  Google Scholar 

  • Wilson AD, McLean JW. Glass-ionomer cement. Chicago: Quintessence Publishing; 1988.

    Google Scholar 

  • Wilson AD, Mesley RF. Dental silicate cements VI. Infrared studies. J Dent Res. 1968;47:644–52.

    Article  PubMed  Google Scholar 

  • Wilson AD, Nicholson JW. Acid base cements. Cambridge: The University Press; 1993.

    Book  Google Scholar 

  • Wilson AS, Kent KE, Batchelor RF. Dental silicate cements, IV. Phosphoric acid modifiers. J Dent Res. 1968;47:233–43.

    Article  PubMed  Google Scholar 

  • Wilson AD, Kent BE, Batchelor RF, Scott BG, Lewis BG. Dental silicate cements XII. The role of water. J Dent Res. 1970a;49:307–14.

    Article  PubMed  Google Scholar 

  • Wilson AD, Kent BE, Mesley RF, Miller RP, Clinton D, Fletcher KE. Formation of dental silicate cement. Nature. 1970b;225:272–3.

    Article  PubMed  Google Scholar 

  • Wilson AD, Kent BE, Clinton D, Miller RP. The formation and microstructure of the dental silicate cement. J Mater Sci. 1972;7:220–38.

    Article  Google Scholar 

  • Wilson AD, Crisp S, Ferner AJ. Reaction in glass ionomer cements. IV. Effect of chelating co-monomers. J Dent Res. 1976;55:489–95.

    Article  PubMed  Google Scholar 

  • Wilson AD, Crisp S, Abel G. Characterization of glass-ionomer cements. 4. Effect of molecular weight on physical properties. J Dent. 1977a;5:117–20.

    Article  PubMed  Google Scholar 

  • Wilson AD, Crisp S, Lewis BG, McLean JW. Experimental luting cements based on the glass ionomer cements. Br Dent J. 1977b;142:117–22.

    Article  PubMed  Google Scholar 

  • Wilson AD, Paddon JM, Crisp S. The hydration of dental cements. J Dent Res. 1979;58:1065–71.

    Article  PubMed  Google Scholar 

  • Wilson AD, Crisp S, Prosser HJ, Lewis BG, Merson SA. Aluminosilicate glasses for polyelectrolyte cements. Ind Eng Chem Prod Res Dev. 1980;19:263–70.

    Article  Google Scholar 

  • Wilson AD, Crisp S, Paddon JM. The hydration of a glass-ionomer (ASPA) cement. Br Polym J. 1981;13:66–70.

    Article  Google Scholar 

  • Wilson AD, Groffman DM, Kuhn AT. The release of fluoride and other chemical species from a glass-ionomer cement. Biomaterials. 1985;6:431–3.

    Article  PubMed  Google Scholar 

  • Worner HK, Docking AR. Dental materials in the tropics. Aust Dent J. 1958;3:215–29.

    Article  Google Scholar 

  • Zachariasen WH. The atomic arrangement in glass. J Am Chem Soc. 1932;54:3841–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Nicholson BSc, PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicholson, J.W. (2016). The History and Background to Glass-Ionomer Dental Cements. In: Sidhu, S. (eds) Glass-Ionomers in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-22626-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22626-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22625-5

  • Online ISBN: 978-3-319-22626-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics