Skip to main content

Abstract

World population is expected to increase from the current 6.7 billion to more than 10 billion people by the year 2050. This 45 % increase in the current world population will create demand for increased food and other raw materials. At present the supply of fossil fuel, fertilizers, water and chemicals such as insecticides, pesticides and fungicides are at their peak; but this situation will not remain linear in the future. Modern agriculture is essentially based on varieties bred for high performance under high-input systems which generally do not perform well under low-input conditions. Excessive uses of these inputs are posing serious threats to ecology, environment, soil health and ground water. Furthermore, the amount of arable land for crop cultivation is limited and decreasing due to urbanization, salinization, desertification and environmental degradation. With respect to global warming, yields of important food, feed and fiber crops will decline. In addition to these environmental factors, abiotic and biotic stresses also cause losses to crop production. Thus, the challenge before agriculture scientists is to improve the genetic architecture of agricultural crops to perform well against threats and stresses; this will require diverse approaches to enhance the sustainability of agriculture farms. This proposed shift in plant breeding goals, from high energy input and high performance of agriculture, entails an improved rationalization between yield and energy coupled with high quality food as global resources. Sustainable crop production is a way of growing food in an ecologically and ethically responsible manner that does not harm the environment and sustains communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530. http://www.ncbi.nlm.nih.gov

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, Boulder

    Google Scholar 

  • Backlund P, Janetos A, Schimel D et al (2008) The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Baenziger PS, Russell WK, Graef GL et al (2006) Improving lives: 50 years of crop breeding, genetics and cytology (C-1). Crop Sci 46:2230–2244

    Article  Google Scholar 

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc B 363:761–776

    Article  CAS  Google Scholar 

  • Bänziger M, Edmeades GO, Lafitte HR (1999) Selection for drought tolerance increases maize yields over a range of N levels. Crop Sci 39:1035–1040

    Article  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bhag Mal, Joshi V (1991) Underutilised plant resources. In: Paroda RS, Arora RK (eds) Plant genetic resources: conservation and management. IBPGR, New Delhi, pp 211–229

    Google Scholar 

  • Bongiovanni R, Lowenberg-Deboer J (2004) Precision agriculture and sustainability. Precis Agric 5:359–387

    Article  Google Scholar 

  • Borlaug NE (1997) Feeding a world of 10 billion people: the miracle ahead. Plant Tis Cult Biotechnol 3:119–127

    Google Scholar 

  • Boyle G (ed) (1996) Renewable energy – power for a sustainable future. Open University, Oxford

    Google Scholar 

  • Brown AHD, Frankal OH, Marshall DR et al (eds) (1989) The use of plant genetic resources. Cambridge University Press, Cambridge

    Google Scholar 

  • Bunting SW (2007) Confronting the realities of waste water aquaculture in periurban Kolkata with bio-economic modeling. Water Res 41(2):499–505

    Article  CAS  PubMed  Google Scholar 

  • Butler L, Moronek DM (eds) (2002) Urban and agriculture communities: opportunities for common ground. Council for Agricultural Science and Technology, Aimes. Retrieved 1 Apr 2013

    Google Scholar 

  • Cassman KG, Doberman A, Walters DT (2002) Agroecosystems, nitrogen use efficiency and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  • Ceccarelli S (1989) Wide adaptation: how wide. Euphytica 40:197–205

    Google Scholar 

  • Ceccarelli S (1996) Adaptation to low high-input cultivation. Euphytica 92:203–214

    Article  Google Scholar 

  • Cohen J, Alcorn JB, Potter CS (1991) Utilisation and conservation of genetic resources: international projects for sustainable. Agric Econ Bot 45:190–199

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans Roy Soc London Ser B 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Cruz CMV, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics:524–847

    Google Scholar 

  • Dasgupta P (1998) The economics of food. In: Waterlow JC, Armstrong DG, Fowden L, Riley R (eds) Feeding the world population of more than eight billion people. Oxford University Press, New York

    Google Scholar 

  • Delannay X, Baumann TT, Beighley DH et al (1995) Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci 35:1461–1467

    Article  CAS  Google Scholar 

  • Dennis ES, Ellis J, Green A et al (2008) Genetic contributions to agricultural sustainability. Philos Trans R Soc B 363:591–609

    Article  CAS  Google Scholar 

  • Dobbs T, Pretty JN (2004) Agri-environmental stewardship schemes and ‘multifunctionality’. Rev Agric Econ 26:220–237

    Article  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (1996) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. International technical conference on plant genetic resources, Leipzig, Germany 17–23 June 1996

    Google Scholar 

  • FAO (2013) World agriculture towards 2015/2030. Fao.org. Retrieved 10 Sept 2013

    Google Scholar 

  • Feehan J, Gillmor DA, Culleton N (2005) Effects of an agri-environment scheme on farmland biodiversity in Ireland. Agric Ecosyst Environ 107:275–286

    Article  Google Scholar 

  • Fehr WR (ed) (1987) Principles of cultivar development. Vol. 1 Theory and technique. Vol 2. Crop species. Macmillan, New York

    Google Scholar 

  • Firbank LG, Petit S, Smart S et al (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B Biol Sci 363(1492):777–787

    Google Scholar 

  • Flint APF, Woolliams JA (2008) Precision animal breeding. Philos Trans R Soc B 363:573–590

    Article  CAS  Google Scholar 

  • Folke C (2006) Resilience: the emergence of a perspective for social-ecological system analyses. Glob Environ Chang 16(3):253–267

    Article  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser EDG, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37:465–479

    Article  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Goulding K, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans R Soc B 363:667–680

    Article  CAS  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW et al (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hassanali A, Herren H, Khan ZR et al (2008) Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc B 363:611–621

    Article  Google Scholar 

  • Heffner EL, Sorrels MR, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Holling CS, Berkes F, Folke C (1998) Sustainability and resource management. In: Berkes F, Folke C (eds) Linking social and ecological systems; management practice and social mechanism for building resilience. Cambridge University Press, Cambridge, pp 342–362

    Google Scholar 

  • Huang M, Shao M, Zhang L et al (2003) Water use efficiency and sustainability of different long-term crop rotation systems in the Loess Plateau of China. Soil Tillage Res 72:95–104

    Article  Google Scholar 

  • Indicators for sustainable water resources development. Fao.org. Retrieved 10 Sept 2013

    Google Scholar 

  • Jauhar PP (2006a) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859

    Article  CAS  Google Scholar 

  • Jauhar PP (2006b) Use of biotechnology for incorporating value-added traits in cereal crops. International conference on post-harvest technology and value addition in cereals, pulses and oilseeds, p 1

    Google Scholar 

  • Johnson GR, McCuddin ZP (2008) Maize and the biotech industry. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, Berlin

    Google Scholar 

  • Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos Trans R Soc B 363:877–891

    Article  CAS  Google Scholar 

  • Khush GS, Peng S, Virmani SS (1988) Improving yield potential by modifying plant type and exploiting heterosis. In: Feeding the world population of more than eight billion people. Oxford University Press, New York

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B 363:685–701

    Article  CAS  Google Scholar 

  • Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750

    Article  Google Scholar 

  • Koziel TM, Beland GL, Bowman C et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology (NY) 11:194–200

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830

    Article  CAS  Google Scholar 

  • Lampkin NH, Padel S (eds) (1994) The economics of organic farming. An international perspective. CAB International, Wallingford

    Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248. http://www.ncbi.nlm.nih.gov

    Article  PubMed  Google Scholar 

  • Malik SS, Singh SP (2006) Role of plant genetic resources in sustainable agriculture. Indian J Crop Sci 1(1–2):21–28

    Google Scholar 

  • Marker TL, Felix LG, Linck MB et al (2012) Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, part 1: proof of principle testing. Environ Prog Sustain Energy 31(2):191. doi:10.1002/ep.10629

    Article  CAS  Google Scholar 

  • McClymont GL (1975) Formal education and rural development. Occasional Paper Agricultural Education and Extension Service of the Human Resources, Institutions and Agrarian Reform Division. FAO, Rome

    Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM et al (2008) Improving water use in crop production. Philos Trans R Soc B 363:639–658

    Article  CAS  Google Scholar 

  • Mumm RH (2007) Backcross versus forward breeding in the development of transgenic maize hybrids: theory and practice. Crop Sci 47(Suppl 3):S164–S171

    Google Scholar 

  • Naylor RL, Falcon WP, Goodman RM et al (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44

    Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Pixley KM, Fuentes M, Badstue L, Bergvinson D (2007) Participatory plant breeding science or dogma? In: Chopra VL et al (eds) Search for new genes. Academic Foundation, New Delhi

    Google Scholar 

  • Pretty J (1995) Regenerating agriculture. Policies and practice for sustainability and self-reliance. Earthscan, London

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond B Biol Sci 363:447–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaram S, Braun H-J, van Ginkel M (1996) CIMMYT’s approach to breed for drought tolerance. Euphytica 92:147–153

    Article  Google Scholar 

  • Reij C, Scoones I, Toulmin C (1996) Sustaining the soil: indigenous soil and water conservation in Africa. London. In: IIED Drylands Programme Issues Paper (United Kingdom), N 67 International Inst. for Environment and Development. Earthscan, London

    Google Scholar 

  • Roberts RS, Lighthall D (1993) A developmental approach to the adoption of low-input farming practices. Leopold Cent Sustain Agric 2:93–96

    Google Scholar 

  • Rosset P, Collins J, Lappe FM (2000) Lessons from the Green Revolution: do we need new technology to end hunger? Tikkun Mag 15(2):52–56

    Google Scholar 

  • Scialabba NEH, Hattam C (eds) (2002) Organic agriculture, environment and food security. FAO, Rome

    Google Scholar 

  • Shanti ML, George MLC, Cruz CMV et al (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85:506–512

    Article  CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK et al (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc B 363:717–739

    Article  Google Scholar 

  • Singh S, Sidhu JS, Huang N et al (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Slafer GA, Araus JL, Royo C et al (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Stoskopf NC, Tomes DT, Christie BR (1993) Plant breeding: theory and practice. Westview Press, Boulder

    Google Scholar 

  • Sullivan P (2004) Sustainable soil management. Attra. ncat.org. Retrieved 9 May 2010

    Google Scholar 

  • Sullivan P (2011) Overview of cover crops and green manures. National Sustainable Agriculture Information Service. http://attra.ncat.org/attra-pub/covercrop.html

  • Thomson JA (2008) The role of biotechnology for agricultural sustainability in Africa. Philos Trans R Soc B 363:905–913

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96(11):5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trethowan RM, Reynolds MP, Sayre KD et al (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:404–413

    Article  Google Scholar 

  • USDA (2005) http://www.ers.usda.gov/Data/BiotechCrops/

  • USGCRP (2009) In: Karl TR, Melillo JM, Peterson TC (eds) Global climate change impacts in the United States. US global change research program. Cambridge University Press, New York

    Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  PubMed  Google Scholar 

  • Wade MR, Gurr GM, Wratten SD (2008) Ecological restoration of farmland: progress and prospects. Philos Trans R Soc B 363:831–847

    Article  Google Scholar 

  • Wilkins RJ (2008) Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems. Philos Trans R Soc B 363:517–525

    Article  CAS  Google Scholar 

  • Yadav SK, Yogeshwar S, Yadav MK et al (2013) Effect of organic nitrogen sources on yield, nutrient uptake and soil health under rice (Oryza sativa) based cropping sequence. Indian J Agric Sci 83(2):170–175

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Narayan Bharadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bharadwaj, D.N. (2016). Sustainable Agriculture and Plant Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_1

Download citation

Publish with us

Policies and ethics