Skip to main content

Nano to Macro: Mechanical Evaluation of Macroscopically Long Individual Nanofibers

  • Conference paper
MEMS and Nanotechnology, Volume 5

Abstract

Nanomaterials such as carbon nanotubes and graphene attract considerable attention due to their extraordinary mechanical and other properties. However, discontinuous nature of these carbon allotropes prevents easy transfer of their mechanical properties to the macro scale. Continuous nanofibers represent an emerging class of nanomaterials with critical advantages for structural and functional applications. However, their mechanical testing to date has been largely conducted using micrometer-long specimens in AFM-type or MEMS devices. In addition, most published reports did not test nanofibers through failure. As a result, information relevant to potential macroscopic structural applications of nanofibers is currently very limited. Here, we will present and discuss a recently developed, comprehensive mechanical evaluation protocol spanning controlled nanomanufacturing, handling, and mounting of long individual nanofiber specimens, as well as analysis of their large-deformation behavior through failure, and data reduction. The protocol will be demonstrated on several types of synthetic and biological nanofibers, including nanofibers exhibiting unique simultaneously ultrahigh elastic modulus, strength, and deformation to failure, resulting in superhigh toughness. The developed protocol will be instrumental for further optimization of mechanical properties of continuous nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashby, M. F. Materials selection in mechanical design, 3rd ed.; Butterworth-Heinemann, (2004).

    Google Scholar 

  2. The behavior of structures composed of composite materials; Vinson, J.R., Sierakowski, R.L., Eds.; Solid Mechanics And Its Applications; Springer Netherlands: Dordrecht, 2002; Vol. 105.

    Google Scholar 

  3. Hearle, J.W.S.: High-performance fibres. Woodhead Publishing Limited, Cambridge (2001)

    Book  Google Scholar 

  4. Walsh, P.J. Carbon fibers. In: ASM Handbook, vol. 21 “Composites”, (2001)

    Google Scholar 

  5. Hiramatsu, T., Nishimura, T.: Recent technological progress of PAN-based carbon fibre. Mater. Des. 10(2), 93–100 (1989)

    Article  Google Scholar 

  6. Dzenis, Y.A.: Structural nanocomposites. Science (80-.). 319(5862), 419–420 (2008).

    Google Scholar 

  7. Ritchie, R.O., Dzenis, Y.A.: The quest for stronger, tougher materials: A letter and a response. Science (80-.). 320(5875), 448, (2008)

    Google Scholar 

  8. Papkov, D.: Size effects in continuous polyacrylonitrile-based polymer, composite, and carbon nanofibers. PhD Dissertation, (2014)

    Google Scholar 

  9. Richard-Lacroix, M., Pellerin, C.: Molecular orientation in electrospun fibers: From mats to single fibers. Macromolecules 46(24), 9473–9493 (2013)

    Article  Google Scholar 

  10. Greiner, A., Wendorff, J.H.: Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chemie Int. Ed. 46(30), 5670–5703 (2007)

    Article  Google Scholar 

  11. Jaeger, R., Schönherr, H., Vancso, G.: Chain packing in electro-spun poly (ethylene Oxide) visualized by atomic force microscopy. Macromolecules 9297(96), 7634–7636 (1996)

    Article  Google Scholar 

  12. Tombler, T., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C., Tang, M., Wu, S.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405(6788), 769–772 (2000)

    Article  Google Scholar 

  13. Yu, M., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science (80-.). 287(5453), 637–640 (2000)

    Google Scholar 

  14. Papkov, D., Zou, Y., Andalib, M.N., Goponenko, A., Cheng, S.Z.D., Dzenis, Y.A.: Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7(4), 3324–3331 (2013)

    Article  Google Scholar 

  15. Pai, C.: Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics. PhD Dissertation, (2011)

    Google Scholar 

  16. Ji, Y., Li, B., Ge, S., Sokolov, J.C., Rafailovich, M.H.: Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22(3), 1321–1328 (2006)

    Article  Google Scholar 

  17. Wang, M., Jin, H., Kaplan, D.L., Rutledge, G.C.: Mechanical properties of electrospun silk fibers. Macromolecules 37(18), 6856–6864 (2004)

    Article  Google Scholar 

  18. Mack, J.J., Viculis, L.M., Ali, A., Luoh, R., Yang, G., Hahn, H.T., Ko, F.K., Kaner, R.B.: Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv. Mater. 17(1), 77–80 (2005)

    Article  Google Scholar 

  19. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G.L., Li, C., Willis, P.: Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15(14), 1161–1165 (2003)

    Article  Google Scholar 

  20. Cuenot, S., Demoustier-Champagne, S., Nysten, B.: Elastic modulus of polypyrrole nanotubes. Phys. Rev. Lett. 85(8), 1690–1693 (2000)

    Article  Google Scholar 

  21. Tan, E.P.S., Lim, C.T.: Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 84(9), 1603–1605 (2004)

    Article  Google Scholar 

  22. Bellan, L.M., Kameoka, J., Craighead, H.G.: Measurement of the Young’s Moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16(8), 1095–1099 (2005)

    Article  Google Scholar 

  23. Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D.A., Quintana, J.P., Ruoff, R.S.: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon N. Y. 43(10), 2175–2185 (2005)

    Article  Google Scholar 

  24. Arinstein, A., Burman, M., Gendelman, O., Zussman, E.: Effect of supramolecular structure on polymer nanofibre elasticity. Nat. Nano 2(1), 59–62 (2007)

    Article  Google Scholar 

  25. Zussman, E., Burman, M., Yarin, A.L., Khalfin, R., Cohen, Y.: Tensile deformation of electrospun nylon-6,6 nanofibers. J. Polym. Sci. Part B Polym. Phys. 44(10), 1482–1489 (2006)

    Article  Google Scholar 

  26. Jaeger, D., Schischka, J., Bagdahn, J., Jaeger, R.: Tensile testing of individual ultrathin electrospun poly(L-lactic acid) fibers. J. Appl. Polym. Sci. 114(6), 3774–3779 (2009)

    Article  Google Scholar 

  27. Naraghi, M., Chasiotis, I., Kahn, H., Wen, Y., Dzenis, Y.: Novel method for mechanical characterization of polymeric nanofibers. Rev. Sci. Instrum. 78, 085108(1–7) (2007)

    Google Scholar 

  28. Naraghi, M., Arshad, S.N., Chasiotis, I.: Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer (Guildf). 52(7), 1612–1618 (2011).

    Google Scholar 

  29. Beese, A.M., Papkov, D., Li, S., Dzenis, Y., Espinosa, H.D.: In situ transmission electron microscope tensile testing reveals structure–property relationships in carbon nanofibers. Carbon N. Y. 60, 246–253 (2013)

    Article  Google Scholar 

  30. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London. Series A, Contain. Pap. a Math. or Phys. Character 221, 163–198 (1921)

    Article  Google Scholar 

  31. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    MATH  Google Scholar 

  32. Bažant, Z.P., Chen, E.-P.: Scaling of structural failure. Appl. Mech. Rev. 50(10), 593–627 (1997)

    Article  Google Scholar 

  33. Maleckis, K.: Mechanical properties and structure of DNA and collagen nanofilaments. Master’s Theses (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ONR (N000141410663) and NSF (DMR 1310534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Dzenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Papkov, D., Maleckis, K., Zou, Y., Andalib, M., Goponenko, A., Dzenis, Y. (2016). Nano to Macro: Mechanical Evaluation of Macroscopically Long Individual Nanofibers. In: Prorok, B., Starman, L. (eds) MEMS and Nanotechnology, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22458-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22458-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22457-2

  • Online ISBN: 978-3-319-22458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics