Skip to main content

Counting Primes in Arithmetic Progressions

  • Chapter
Analytic Number Theory
  • 1584 Accesses

Abstract

These notes represent an expanded version of a lecture delivered at the Urbana meeting of June 2014 in memory of Paul and Felice Bateman and of Heini Halberstam, and, in modified form, at the October 2014 workshop at the Royal Swedish Academy of Sciences, Stockholm, on the occasion of the presentation to Yitang Zhang of the 2014 Rolf Schock Prize in Mathematics for his ground-breaking work on bounded gaps between primes.

To Helmut Maier on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This co-primality restriction is assumed throughout, though not always explicitly mentioned.

References

  1. M.B. Barban, The “density” of the zeros of Dirichlet L-series and the problem of the sum of primes and “near primes”. Mat. Sb. (N.S.) 61, 418–425 (1963)

    Google Scholar 

  2. E. Bombieri, On the large sieve. Mathematika 12, 201–225 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bombieri, J.B. Friedlander, H. Iwaniec, Primes in arithmetic progressions to large moduli. Acta Math. 156, 203–251 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli III. J. Amer. Math. Soc. 2, 215–224 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Brun, Über das goldbachsche Gesetz und die Anzahl der Primzahlpaare. Arch. Math. Naturvid. B34(8), 1–19 (1915)

    Google Scholar 

  6. A.A. Buchstab, New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs. Dokl. Akad. Nauk SSSR 162, 735–738 (1965). (Soviet Math. Dokl. 6, 729–732 (1965))

    Google Scholar 

  7. J.R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157–176 (1973)

    MathSciNet  MATH  Google Scholar 

  8. G.L. Dirichlet, Beweiss des Satzes das jede arithmetische Progression deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Werke pp. 313–342, Kön. Preuss. Akad. der Wissen., Berlin, 1889. Reprinted Chelsea, New York, 1969

    Google Scholar 

  9. P.D.T.A. Elliott, H. Halberstam, A conjecture in prime number theory, in Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69) (Academic Press, London, 1970), pp. 59–72

    Google Scholar 

  10. D. Fiorilli, Residue classes containing an unexpected number of primes. Duke Math. J. 161, 2923–2943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Fiorilli, The influence of the first term of an arithmetic progression. Proc. Lond. Math. Soc. 106, 819–858 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Fouvry, Sur le problème des diviseurs de Titchmarsh. J. Reine Angew. Math. 357, 51–76 (1985)

    MathSciNet  MATH  Google Scholar 

  13. E. Fouvry, H. Iwaniec, Primes in arithmetic progressions. Acta Arith. 42, 197–218 (1983)

    MathSciNet  MATH  Google Scholar 

  14. J.B. Friedlander, A. Granville, Limitations to the equi-distribution of primes I. Ann. Math. (2) 129, 363–382 (1989)

    Google Scholar 

  15. J.B. Friedlander, A. Granville, Limitations to the equi-distribution of primes III. Compos. Math. 81, 19–32 (1992)

    MathSciNet  MATH  Google Scholar 

  16. J.B. Friedlander, A. Granville, Relevance of the residue class to the abundance of primes, in Proceedings of the Amalfi Conference (Maiori, 1989) (Università di Salerno, Salerno, 1992), pp. 95–103

    Google Scholar 

  17. J.B. Friedlander, A. Granville, A. Hildebrand, H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions. J. Amer. Math. Soc. 4, 25–86 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.B. Friedlander, H. Iwaniec, Opera de cribro, in American Mathematical Society Colloquium Publications, vol. 57 (American Mathematical Society, Providence, RI, 2010)

    Google Scholar 

  19. D.A. Goldston, J. Pintz, C.Y. Yildirim, Primes in tuples I. Ann. Math. 170(2), 819–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Iwaniec, A new form of the error term in the linear sieve. Acta Arith. 37, 307–320 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Yu.V. Linnik, The Dispersion Method in Binary Additive Problems (American Mathematical Society, Providence, RI, 1963)

    MATH  Google Scholar 

  22. H. Maier, Primes in short intervals. Michigan Math. J. 32, 221–225 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Maynard, Small gaps between primes. Ann. Math. 181(2), 383–413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Montgomery, in Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, vol. 227 (Springer, Berlin/New York, 1971)

    Google Scholar 

  25. H. Montgomery, Problems concerning prime numbers. in Mathematical Developments Arising from the Hilbert Problems, Northern Illinois University, De Kalb Illinois, 1974. Proceedings of Symposia in Pure Mathematics, vol. XXVIII, pp. 307–310 (American Mathematical Society, Providence, RI, 1976)

    Google Scholar 

  26. D.H.J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (2014) (to appear)

    Google Scholar 

  27. A. Renyi, On the representation of an even number as the sum of a single prime and single almost-prime number. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948) 57–78. (Amer. Math. Soc. Transl. 19(2), 299–321 (1962)

    Google Scholar 

  28. P.L. Tchebyshev, Sur la function qui détermine la totalité des nombres prémiers inferieurs à une limite donnée. J. Math. Pures et Appl. 17, 366–390 (1852)

    Google Scholar 

  29. I.M. Vinogradov, Selected Works (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  30. A. Walfisz, Zur additiven Zahlentheorie II. Math. Zeit. 40, 592–607 (1936)

    Article  MathSciNet  Google Scholar 

  31. Y. Zhang, Bounded gaps between primes. Ann. Math. (2) 179, 1121–1174 (2014)

    Google Scholar 

Download references

Acknowledgements

The author’s research is partially supported by a University Professor Grant from the University of Toronto and by the Natural Sciences and Engineering Research Council of Canada through Research Grant A5123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Friedlander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Friedlander, J.B. (2015). Counting Primes in Arithmetic Progressions. In: Pomerance, C., Rassias, M. (eds) Analytic Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22240-0_7

Download citation

Publish with us

Policies and ethics