Skip to main content

Théorème de Jordan Friable

  • Chapter
Analytic Number Theory

Abstract

Extending a previous result, we show that, for the friable summation method, the Fourier series of any normalized function F with bounded variation on the unidimensional torus converges pointwise to F while avoiding the Gibbs phenomenon. We also prove that the convergence is uniform when F is continuous and provide an effective bound for the rate when F satisfies a uniform Lipschitz condition.

Pour Helmut Maier, qui compte par plaisir et partage sans compter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Désigné dans ces travaux sous le nom de P-convergence ou P-sommabilité.

  2. 2.

    On peut aussi établir directement via la formule d’Euler–Maclaurin que, pour \(0 < \vert \vartheta \vert \leqslant \frac{1} {2}\), on a \(f(\vartheta ) \ll 1/\{\vartheta (\log \vartheta )^{2}\}\).

  3. 3.

    Voir par exemple [7], chapitre III.5. Rappelons que \(\varrho\) est la solution continue de l’équation différentielle aux différences \(u\varrho '(u) +\varrho (u - 1) = 0\) avec la condition initiale \(\varrho (u) = 1\) \((0\leqslant u\leqslant 1)\).

Bibliographie

  1. R. de la Bretèche, P-régularité de sommes d’exponentielles. Mathematika 45, 145–175 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. R. de la Bretèche, G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques. J. Anal. Math. 92, 1–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. R.J. Duffin, Representation of Fourier integrals as sums, III. Proc. Am. Math. Soc. 8, 272–277 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  4. É. Fouvry, G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques. Proc. Lond. Math. Soc. 63(3), 449–494 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Katznelson, An Introduction to Harmonic Analysis, 2ème édn. (Dover, New York, 1976)

    Google Scholar 

  6. T.W. Körner, Fourier Analysis, 2nd edn. (Cambridge University Press, Cambridge, 1989), xii+591 pp.

    Google Scholar 

  7. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 3ème édn. (coll. Échelles, Belin, 2008), 592 pp.

    Google Scholar 

  8. G. Tenenbaum, J. Wu, Exercices corriges de théorie analytique et probabiliste des nombres (coll. Échelles, Belin, 2014), 347 pp.

    Google Scholar 

  9. A. Zygmund, Trigonometric Series. Cambridge Mathematical Library, vol. I, II, 3ème édn. (Cambridge University Press, Cambridge, 2002), vol. I: xiv+383 pp.; vol. II: viii+364 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald Tenenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Bretèche, R., Tenenbaum, G. (2015). Théorème de Jordan Friable. In: Pomerance, C., Rassias, M. (eds) Analytic Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22240-0_3

Download citation

Publish with us

Policies and ethics