Skip to main content

Abstract

All pharmaceuticals undergo a comprehensive panel of non-clinical tests to ensure their safety before being approved for use in humans. Genetic toxicity and carcinogenicity testing in whole animal and cell-based assays are a significant component of this testing and the outcome of these studies can significantly impact the marketability of a drug product. Consequently, there is a strong desire for pharmaceutical developers to assess the potential of new drug candidates to cause these effects prior to investing significant resources and in advance of regulatory submission. Early screening of pharmaceutical candidates can be performed through the application of computational methods that evaluate the relationship between chemical structural descriptors and genotoxic and/or carcinogenic outcomes. (Quantitative) structure-activity relationship [(Q)SAR] models represent an entirely virtual assessment that relies only on knowledge of chemical structure to provide a prediction, making them inexpensive and rapid to apply without the need for synthesis of the potential drug candidate. Toxicogenomic-based approaches aim to assess biological functions based on interactions among various parts of biological systems with emphasis on molecular pathways. Toxicogenomics consists of interrogating pathways via studying the genome-wide gene expression changes, and is the most widely explored systems biology methodology in carcinogenicity and genotoxicity risk assessment. It is typically performed at later stages of the drug development process to interpret chemical exposure-induced perturbations of biological pathways by identifying molecular initiating events that can predict downstream genotoxic and carcinogenic consequences, as well as address the question of human relevance of non-clinical safety findings. Although the qualification of toxicogenomic-based approaches for regulatory use is being pursued by industry and regulatory agencies, the application of these methodologies is currently limited to exploratory analyses by pharmaceutical developers. In contrast, in addition to their application to early drug discovery, (Q)SAR models are now being routinely utilized under harmonized regulatory guidance for the late-stage safety assessment of drug substance impurities.

This chapter provides an overview of the use of chemical structure-based and toxicogenomic-based methods in pharmaceutical development, with a focus on the endpoints of genetic toxicity and carcinogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICH (2011) S2(R1) Guidance on genotoxicity testing and data interpretation for pharmaceuticals for human use. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S2_R1/Step4/S2R1_Step4.pdf

  2. Kirkland D, Aardema M, Muller L, Hayashi M (2006) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles. Mutat Res 608(1):29–42

    Article  CAS  PubMed  Google Scholar 

  3. Kirkland D, Aardema M, Henderson L, Muller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584(1–2):1–256

    Article  CAS  PubMed  Google Scholar 

  4. Snyder RD, Green JW (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488(2):151–169

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann S, Hartung T (2006) Toward an evidence-based toxicology. Hum Exp Toxicol 25(9):497–513

    Article  CAS  PubMed  Google Scholar 

  6. MacDonald JS (2004) Human carcinogenic risk evaluation, part IV: assessment of human risk of cancer from chemical exposure using a global weight-of-evidence approach. Toxicol Sci 82(1):3–8

    Article  CAS  PubMed  Google Scholar 

  7. Knight A, Bailey J, Balcombe J (2006) Animal carcinogenicity studies: 2. Obstacles to extrapolation of data to humans. Altern Lab Anim 34(1):29–38

    CAS  PubMed  Google Scholar 

  8. Vinken M, Doktorova T, Ellinger-Ziegelbauer H, Ahr HJ, Lock E, Carmichael P et al (2008) The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. Mutat Res 659(3):202–210

    Article  CAS  PubMed  Google Scholar 

  9. Thomas RS, O'Connell TM, Pluta L, Wolfinger RD, Yang L, Page TJ (2007) A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays. Toxicol Sci 96(1):40–46

    Article  CAS  PubMed  Google Scholar 

  10. ICH (1995) S1A Guideline on the need for carcinogenicity studies of pharmaceuticals. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1A/Step4/S1A_Guideline.pdf

  11. OECD (2008) Test Guideline 451: carcinogenicity studies. http://www.oecd.org/chemicalsafety/testing/41753121.pdf

  12. Jacobson-Kram D, Sistare FD, Jacobs AC (2004) Use of transgenic mice in carcinogenicity hazard assessment. Toxicol Pathol 32(Suppl 1):49–52

    Article  CAS  PubMed  Google Scholar 

  13. Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  CAS  PubMed  Google Scholar 

  14. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890

    Article  CAS  PubMed  Google Scholar 

  15. Aubrecht J, Xu JJ (2010) Screening approaches for genetic toxicology. In: Xu JJ, Urban L (eds) Predictive toxicology in drug safety. Cambridge University Press, New York, pp 18–33

    Chapter  Google Scholar 

  16. ICH (2014) M7 Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_Step_4.pdf

  17. Ku WW, Aubrecht J, Mauthe RJ, Schiestl RH, Fornace AJ Jr (2007) Genetic toxicity assessment: employing the best science for human safety evaluation Part VII: Why not start with a single test: a transformational alternative to genotoxicity hazard and risk assessment. Toxicol Sci 99(1):20–25

    Article  CAS  PubMed  Google Scholar 

  18. Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res 705(3):184–200

    Article  CAS  PubMed  Google Scholar 

  19. Hendrickson JB (1991) Concepts and applications of molecular similarity – Johnson, Ma, Maggiora, Gm. Science 252(5009):1189

    Google Scholar 

  20. Hansch C, Fujita T (1964) Additions and corrections – analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc. 86(24):5710

    Google Scholar 

  21. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29(6–7):476–488

    Article  CAS  Google Scholar 

  22. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics (2 vols). Wiley-VCH, Weinheim, 1257 p

    Book  Google Scholar 

  23. OECD (2007) Guidance document on the validation of (Quantitative) structure activity relationships [(Q)SAR] models. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono%282007%292

  24. Ridings JE, Barratt MD, Cary R, Earnshaw CG, Eggington CE, Ellis MK et al (1996) Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology 106(1–3):267–279

    Article  CAS  PubMed  Google Scholar 

  25. Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res 659(3):248–261

    Article  CAS  PubMed  Google Scholar 

  26. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111(10):1361–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cronin MT, Madden JC (2010) In silico toxicology: principles and applications. Chapter 11: Characterisation, evaluation and possible validation of in silico models for toxicity: Determining if a prediction is valid. Royal Society of Chemistry 275–300

    Google Scholar 

  28. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2005) In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software. Requl Toxicol Pharmacol 43(3):313–323

    Article  CAS  Google Scholar 

  29. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD (2008) In silico screening of chemicals for genetic toxicity using MDL-QSAR, nonparametric discriminant analysis, E-state, connectivity, and molecular property descriptors. Toxicol Mech Methods 18(2–3):207–216

    Article  CAS  PubMed  Google Scholar 

  30. Kruhlak NL, Benz RD, Zhou H, Colatsky TJ (2012) (Q)SAR modeling and safety assessment in regulatory review. Clin Pharmacol Ther 91(3):529–534

    Article  CAS  PubMed  Google Scholar 

  31. Kruhlak NL, Contrera JF, Benz RD, Matthews EJ (2007) Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev 59(1):43–55

    Article  CAS  PubMed  Google Scholar 

  32. Matthews EJ, Contrera JF (1998) A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Requl Toxicol Pharmacol 28(3):242–264

    Article  CAS  Google Scholar 

  33. Matthews EJ, Kruhlak NL, Cimino MC, Benz RD, Contrera JF (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Requl Toxicol Pharmacol 44(2):83–96

    Article  CAS  Google Scholar 

  34. Matthews EJ, Kruhlak NL, Cimino MC, Benz RD, Contrera JF (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Requl Toxicol Pharmacol 44(2):97–110

    Article  CAS  Google Scholar 

  35. Bailey AB, Chanderbhan R, Collazo-Braier N, Cheeseman MA, Twaroski ML (2005) The use of structure-activity relationship analysis in the food contact notification program. Requl Toxicol Pharmacol 42(2):225–235

    Article  CAS  Google Scholar 

  36. Cronin MT, Walker JD, Jaworska JS, Comber MH, Watts CD, Worth AP (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111(10):1376–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Walker JD (2003) Applications of QSARs in toxicology: a US government perspective. J Mol Struct (THEOCHEM) 622(1–2):167–184

    Article  CAS  Google Scholar 

  38. Arvidson KB, Chanderbhan R, Muldoon-Jacobs K, Mayer J, Ogungbesan A (2010) Regulatory use of computational toxicology tools and databases at the united states food and drug Administration's office of food additive safety. Expert Opin Drug Metab Toxicol 6(7):793–796

    Article  CAS  PubMed  Google Scholar 

  39. Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T (2011) Comparative evaluation of in silico systems for ames test mutagenicity prediction: scope and limitations. Chem Res Toxicol 24(6):843–854

    Article  CAS  PubMed  Google Scholar 

  40. Sutter A, Amberg A, Boyer S, Brigo A, Contrera JF, Custer LL et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Requl Toxicol Pharmacol 67(1):39–52

    Article  CAS  Google Scholar 

  41. Contrera JF (2013) Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals. Requl Toxicol Pharmacol 67(2):285–293

    Article  CAS  Google Scholar 

  42. ICH (1998) S1B Testing for carcinogenicity of pharmaceuticals. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1B/Step4/S1B_Guideline.pdf

  43. Bourcier TM, McGovern TJ, Stavitskaya L, Kruhlak NL, Jacobson Kram D (2015) Improving prediction of carcinogenicity while aiming to reduce, refine, and replace the use of experimental animals. J Am Assoc Lab Anim Sci 54(2)):163–169

    PubMed Central  PubMed  Google Scholar 

  44. Stavitskaya L, Kruhlak NL, Cross KP, Minnier BL, Bower DA, Chakravarti S et al (2013) Development of improved in silico models for predicting rodent carcinogenicity. Int J Toxicol 32(1):72

    Google Scholar 

  45. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  PubMed  Google Scholar 

  46. Farr S, Dunn RT 2nd (1999) Concise review: gene expression applied to toxicology. Toxicol Sci 50(1):1–9

    Article  CAS  PubMed  Google Scholar 

  47. Hamadeh HK, Bushel PR, Jayadev S, DiSorbo O, Bennett L, Li L et al (2002) Prediction of compound signature using high density gene expression profiling. Toxicol Sci 67(2):232–240

    Article  CAS  PubMed  Google Scholar 

  48. Briede JJ, van Delft JM, de Kok TM, van Herwijnen MH, Maas LM, Gottschalk RW et al (2010) Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci 114(2):193–203

    Article  CAS  PubMed  Google Scholar 

  49. Amundson SA, Do KT, Vinikoor L, Koch-Paiz CA, Bittner ML, Trent JM et al (2005) Stress-specific signatures: expression profiling of p53 wild-type and -null human cells. Oncogene 24(28):4572–4579

    Article  CAS  PubMed  Google Scholar 

  50. Aubrecht J, Caba E (2005) Gene expression profile analysis: an emerging approach to investigate mechanisms of genotoxicity. Pharmacogenomics 6(4):419–428

    Article  CAS  PubMed  Google Scholar 

  51. Dickinson DA, Warnes GR, Quievryn G, Messer J, Zhitkovich A, Rubitski E et al (2004) Differentiation of DNA reactive and non-reactive genotoxic mechanisms using gene expression profile analysis. Mutat Res 549(1–2):29–41

    Article  CAS  PubMed  Google Scholar 

  52. Heinloth AN, Shackelford RE, Innes CL, Bennett L, Li L, Amin RP et al (2003) Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 37(2):65–82

    Article  CAS  PubMed  Google Scholar 

  53. Ellinger-Ziegelbauer H, Aubrecht J, Kleinjans JC, Ahr HJ (2008) Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity. Toxicol Lett 186(1):36–44

    Article  PubMed  Google Scholar 

  54. Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2005) Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 575(1–2):61–84

    Article  CAS  PubMed  Google Scholar 

  55. Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99(1):90–100

    Article  CAS  PubMed  Google Scholar 

  56. Fielden MR, Adai A, Dunn RT 2nd, Olaharski A, Searfoss G, Sina J et al (2011) Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol Sci 124(1):54–74

    Article  CAS  PubMed  Google Scholar 

  57. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ et al (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28(8):827–838

    Article  CAS  PubMed  Google Scholar 

  58. Consortium SM-I (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat Biotechnol 32(9):903–914

    Article  Google Scholar 

  59. Hamadeh HK, Bushel PR, Jayadev S, Martin K, DiSorbo O, Sieber S et al (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67(2):219–231

    Article  CAS  PubMed  Google Scholar 

  60. Heng-Hong L, Hyduke DR, Chen R, Heard P, Aubrecht J, Fornace AJ Jr (2015) Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells. Environ Mol Mutagen 56(6):505–519

    Article  Google Scholar 

  61. Holsapple MP, Pitot HC, Cohen SM, Boobis AR, Klaunig JE, Pastoor T et al (2006) Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol Sci 89(1):51–56

    Article  CAS  PubMed  Google Scholar 

  62. Henderson L, Albertini S, Aardema M (2000) Thresholds in genotoxicity responses. Mutat Res 464(1):123–128

    Article  CAS  PubMed  Google Scholar 

  63. Scott D, Galloway SM, Marshall RR, Ishidate M Jr, Brusick D, Ashby J et al (1991) International commission for protection against environmental mutagens and carcinogens. Genotoxicity under extreme culture conditions. A report from ICPEMC task group 9. Mutat Res 257(2):147–205

    Article  CAS  PubMed  Google Scholar 

  64. Kirkland DJ, Muller L (2000) Interpretation of the biological relevance of genotoxicity test results: the importance of thresholds. Mutat Res 464(1):137–147

    Article  CAS  PubMed  Google Scholar 

  65. Thybaud V, Le Fevre AC, Boitier E (2007) Application of toxicogenomics to genetic toxicology risk assessment. Environ Mol Mutagen 48(5):369–379

    Article  CAS  PubMed  Google Scholar 

  66. Akerman GS, Rosenzweig BA, Domon OE, McGarrity LJ, Blankenship LR, Tsai CA et al (2004) Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells. Mutat Res 549(1–2):43–64

    Article  CAS  PubMed  Google Scholar 

  67. Islaih M, Li B, Kadura IA, Reid-Hubbard JL, Deahl JT, Altizer JL et al (2004) Comparison of gene expression changes induced in mouse and human cells treated with direct-acting mutagens. Environ Mol Mutagen 44(5):401–419

    Article  CAS  PubMed  Google Scholar 

  68. Doktorova TY, Yildirimman R, Vinken M, Vilardell M, Vanhaecke T, Gmuender H et al (2013) Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models. Carcinogenesis 34(6):1393–1402

    Article  CAS  PubMed  Google Scholar 

  69. Jennen DG, Gaj S, Giesbertz PJ, van Delft JH, Evelo CT, Kleinjans JC (2010) Biotransformation pathway maps in WikiPathways enable direct visualization of drug metabolism related expression changes. Drug Discov Today 15(19–20):851–858

    Article  CAS  PubMed  Google Scholar 

  70. Jetten MJ, Kleinjans JC, Claessen SM, Chesne C, van Delft JH (2013) Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes. Toxicol In Vitro 27(7):2031–2040

    Article  CAS  PubMed  Google Scholar 

  71. Goodsaid FM, Smur S, Aubrecht J, Burczynski ME, Catalano J, Carl K (2010) Voluntary exploratory data submissions to the USFDA and the EMA: experience and impact. Nat Rev Drug Discov 9:435–445

    Article  CAS  PubMed  Google Scholar 

  72. Jacobs A (2005) Prediction of 2-year carcinogenicity study results for pharmaceutical products: how are we doing? Toxicol Sci 88(1):18–23

    Article  CAS  PubMed  Google Scholar 

  73. Jacobs A, Jacobson-Kram D (2004) Human carcinogenic risk evaluation, Part III: Assessing cancer hazard and risk in human drug development. Toxicol Sci 81(2):260–262

    Article  CAS  PubMed  Google Scholar 

  74. Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2004) Characteristic expression profiles induced by genotoxic carcinogens in rat liver. Toxicol Sci 77(1):19–34

    Article  CAS  PubMed  Google Scholar 

  75. Fielden M, Nelson B, Kherani A (2011) Acute intraocular inflammation following intravitreal injection of bevacizumab – a large cluster of cases. Acta Ophthalmol 89(8):e664–e665

    Article  CAS  PubMed  Google Scholar 

  76. Thomas RS, Allen BC, Nong A, Yang L, Bermudez E, Clewell HJ 3rd et al (2007) A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicol Sci 98(1):240–248

    Article  CAS  PubMed  Google Scholar 

  77. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485

    Article  CAS  PubMed  Google Scholar 

  78. Moffat I, Chepelev N (2015) Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 45:1–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi L. Kruhlak .

Editor information

Editors and Affiliations

Additional information

Disclaimer for FDA Authors

The views expressed in this document have not been formally disseminated by the FDA and should not be construed to represent any agency determination or policy.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stavitskaya, L., Aubrecht, J., Kruhlak, N.L. (2015). Chemical Structure-Based and Toxicogenomic Models. In: Graziano, M., Jacobson-Kram, D. (eds) Genotoxicity and Carcinogenicity Testing of Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-22084-0_2

Download citation

Publish with us

Policies and ethics