Skip to main content

1D Confinement Stabilizes Non-equilibrium Liquid Phase with Enhanced Orientational Order

  • Chapter
  • First Online:
Non-equilibrium Phenomena in Confined Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 1166 Accesses

Abstract

Recent models of the glass transition rationalize the relevant features of vitrification by introducing the concept of medium range order in supercooled liquids. In particular, a crucial role is assigned to the orientational order induced by intermolecular bonding (bond orientational order , BOO). Although this idea is very appealing, severe difficulties limit the experimental determination of the BOO in molecular liquids: because of the small difference in entropy and in form factor between the isotropic liquid and the phase rich in orientational order, calorimetry and scattering techniques cannot be used to assess the BOO. In this chapter we describe an innovative model to investigate BOO via broadband dielectric spectroscopy . We verified that ultrathin films of polyols deposited by physical vapor deposition below their glass transition temperature show an extraordinary enhancement in bond orientational, indicated by a huge enhancement of the dielectric strength with respect to the bulk values. Hint of an underlying phase transition was found from a liquid phase enriched in bond orientational order, with a metastable character, towards an ordinary liquid phase. The kinetic stability of the metastable phase could be tuned by varying the deposition conditions and the molecular size. The impact of film thickness and of the presence of a solid substrate on the persistence of enhanced BOO were also investigated. We demonstrate that confinement stabilizes the non-equilibrium character of our supercooled liquids with enhanced orientational order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Δε maxN :

Maximum value of ΔεN

g 3D6 :

Spatial correlation function of g6

LFSs:

Locally favoured structures

μ:

Dielectric dipole moment

m:

Fragility index

MROL:

Medium Range Order Liquid

OL:

Ordinary Liquid

S:

Concentration of locally favoured structures

τ:

Structural relaxation time

Tg :

Glass transition temperature

TOP:

Two Order Parameters (Model)

v:

MROL to OL transformation velocity

References

  1. Capponi, S., Napolitano, S., Wübbenhorst, M.: Nat. Commun. 3, 1233 (2012)

    Article  ADS  Google Scholar 

  2. Steinhardt, P.J., Nelson, D.R., Ronchetti, M.: Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  3. Tanaka, H.: J. Chem. Physics 111, 3163 (1999)

    Article  ADS  Google Scholar 

  4. Tanaka, H.: J. Phys. Condens. Matter 23, 17 (2011)

    Google Scholar 

  5. Shintani, H., Tanaka, H.: Nat. Phys. 2, 200 (2006)

    Article  Google Scholar 

  6. Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K.: Nat. Mater. 9, 324 (2010)

    Article  ADS  Google Scholar 

  7. Tarjus, G., Kivelson, S.A., Nussinov, Z., Viot, P.: J. Phys. Condens. Matter 17, R1143 (2005)

    Article  ADS  Google Scholar 

  8. Hohenberg, P. C., Halperin, B. I.: Rev. Mod. Phys. 49, 435 (1977)

    Google Scholar 

  9. See supplementary information of Ref. [5] http://www.nature.com/nphys/journal/v2/n3/extref/nphys235-s1.pdf. Accessed 23 April 2015

  10. The definition the definition of the hexatic order parameter in a 3D system, is given by \({\text{g}}_{ 6}^{{ 3 {\text{D}}}} \left( {\text{r}} \right){ = }\frac{{ 4\uppi}}{ 13}{{\left\langle {\sum\limits_{\text{m = - 6}}^{ 6} {{\text{Q}}_{{ 6 {\text{m}}}} \left( {\text{r}} \right){\text{Q*}}_{{ 6 {\text{m}}}} \left( 0\right)} } \right\rangle } \mathord{\left/ {\vphantom {{\left\langle {\sum\limits_{\text{m = - 6}}^{ 6} {{\text{Q}}_{{ 6 {\text{m}}}} \left( {\text{r}} \right){\text{Q*}}_{{ 6 {\text{m}}}} \left( 0\right)} } \right\rangle } {\text{g(r)}}}} \right. \kern-0pt} {\text{g(r)}}}\) where Q6m is the complex bond order parameter in 3D, g(r) is the normalized to the radial distribution. Numerical simulations reported in ref 8 proved that g 3D6 is well fitted by eq.7

    Google Scholar 

  11. Oh, S.H., Kauffmann, Y., Scheu, C., Kaplan, W.D., Rühle, M.: Science 310, 661 (2005)

    Article  ADS  Google Scholar 

  12. Swallen, S.F., Kearns, K.L., Mapes, M.K., Kim, Y.S., McMahon, R.J., Ediger, M.D., Wu, T., Yu, L., Satija, S.: Science 315, 353 (2007)

    Article  ADS  Google Scholar 

  13. Pauling, L.: The Nature of the Chemical Bond. Cornell University Press (1939)

    Google Scholar 

  14. Note: EOH•••O = 8-11 kBT/ bond, Douglas, B.E., McDaniel, D.H., Alexander, J.J.: Concepts and Models of Inorganic Chemistry. Wiley, New York City (1994)

    Google Scholar 

  15. The reader should note that, in case of centrosymmetric structures the term z<cosy>=0, and the Kirkwood factor is 1. In this case Δε provides no information about the average orientational order. However, that does not occur for our samples, because poliols ar linear chains and very unlikely they can form centrosymmetric structures via hydrogen intermolecular bondings

    Google Scholar 

  16. Capponi, S., Napolitano, S., Behrnd, N.R., Couderc, G., Hulliger, J., Wübbenhorst, M.: J. Phys. Chem. C 114, 16696 (2010)

    Article  Google Scholar 

  17. Asai, M., Shibayama, M., Koike, Y.: Macromolecules 44, 6615 (2011)

    Article  Google Scholar 

  18. Napolitano, S., Wübbenhorst, M.: Macromolecules 39, 5967 (2006)

    Article  ADS  Google Scholar 

  19. Rotella, C., Wübbenhorst, M., Napolitano, S.: Soft Matter 7, 5260 (2011)

    Article  ADS  Google Scholar 

  20. Paluch, M., Grzybowska, K., Grzybowski, A.: J. Phys. Condens. Matter 19, 12 (2007)

    MATH  Google Scholar 

  21. Watanabe, K., Kawasaki, T., Tanaka, H.: Nat. Mater. 10, 512 (2011)

    Article  ADS  Google Scholar 

  22. Swallen, S.F., Traynor, K., McMahon, R.J., Ediger, M.D., Mates, T.E.: Phys. Rev. Lett. 102, 065503 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simona Capponi or Michael Wübbenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capponi, S., Napolitano, S., Wübbenhorst, M. (2015). 1D Confinement Stabilizes Non-equilibrium Liquid Phase with Enhanced Orientational Order. In: Napolitano, S. (eds) Non-equilibrium Phenomena in Confined Soft Matter. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-21948-6_10

Download citation

Publish with us

Policies and ethics