Skip to main content

Pulsar Wind Nebulae

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very high-energy gamma rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arzoumanian Z, Chernoff DF, Cordes JM (2002) The velocity distribution of isolated radio pulsars. ApJ 568:289–301

    Article  ADS  Google Scholar 

  • Atoyan AM, Aharonian FA (1996) On the mechanisms of gamma radiation in the crab nebula. MNRAS 278:525–541

    Article  ADS  Google Scholar 

  • Begelman MC, Li Z-Y (1992) An axisymmetric magnetohydrodynamic model for the crab pulsar wind bubble. ApJ 397:187–195

    Article  ADS  Google Scholar 

  • Blondin JM, Chevalier RA, Frierson DM (2001) Pulsar wind nebulae in evolved supernova remnants. ApJ 563:806

    Article  ADS  Google Scholar 

  • Bocchino F, Bandiera R, Gelfand JD (2010) XMM-Newton and SUZAKU detection of an X-ray emitting shell around the pulsar wind nebula G54.1+0.3. A&A 520A:71

    Google Scholar 

  • Bogovalov SV (1999) On the physics of cold MHD winds from oblique rotators. A&A 349:1017

    ADS  Google Scholar 

  • Brownsberger S, Romani RW (2014) A survey for H-alpha pulsar bow shocks. ApJ 784:154

    Article  ADS  Google Scholar 

  • Bucciantini N (2011) MHD models of pulsar wind nebulae. ASSP 21:473

    ADS  Google Scholar 

  • Bucciantini N, Bandiera R (2001) Pulsar bow-shock nebulae. I. Physical regimes and detectability conditions. A&A 375:1032–1039

    Google Scholar 

  • Camilo F, Ransom SM, Gaensler BM, Slane P, Lorimer DR, Reynolds J et al (2006) PSR J1833-1034: discovery of the central young pulsar in the supernova remnant G21.5-0.9. ApJ 637: 456–465

    Article  ADS  Google Scholar 

  • Carrigan F, Brun F, Chaves RCG, Deil C, Donath A, Gast H et al (2013) The H.E.S.S. galactic plane survey – maps, source catalog and source population. In: Proceedings of the 33rd international cosmic ray conference (arXiv:1307.4690)

    Google Scholar 

  • Chevalier RC (1977) Was SN 1054 a type II supernova? In: Schramm DN (ed) Supernovae. Astrophys Space Sci Libr 66:53

    Article  ADS  Google Scholar 

  • de Jager OC, Slane PO, LaMassa S (2008) Probing the radio to X-ray connection of the Vela X pulsar wind nebula with Fermi LAT and H.E.S.S. ApJ 689:L125

    Google Scholar 

  • Fesen RA, Shull JM, Hurford AP (1997) An optical study of the circumstellar environment around the crab nebula. AJ 113:354–363

    Article  ADS  Google Scholar 

  • Gaensler BM, van der Swaluw E, Camilo F, Kaspi VM, Baganoff FK, Yusef-Zadeh F et al (2004) The mouse that soared: high-resolution X-Ray imaging of the pulsar-powered bow shock G359.23-0.82. ApJ 616:383–402

    Article  ADS  Google Scholar 

  • Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. ARA&A 44:17–47

    Article  ADS  Google Scholar 

  • Gelfand JD, Gaensler BM, Slane PO, Patnaude DJ, Hughes JP, Camilo F (2007) The radio emission, X-Ray emission, and hydrodynamics of G328.4+0.2: A comprehensive analysis of a luminous pulsar wind nebula, its neutron star, and the progenitor supernova explosion. ApJ 663:468–486

    Article  ADS  Google Scholar 

  • Gelfand JD, Slane PO, Zhang W (2009) A dynamical model for the evolution of a pulsar wind nebula inside a nonradiative supernova remnant. ApJ 703:2051–2067

    Article  ADS  Google Scholar 

  • Gelfand JD, Slane PO, Temim T (2015) The properties of the progenitor supernova, pulsar wind, and neutron star inside PWN G54.1+0.3. ApJ 807:30

    Google Scholar 

  • Goldreich P, Julian WH (1969) Pulsar electrodynamics. ApJ 157:869

    Article  ADS  Google Scholar 

  • Hester JJ (2008) The crab nebula: an astrophysical chimera. ARA&A 46:127–155

    Article  ADS  Google Scholar 

  • Kargaltsev O, Cerutti B, Lyubarsky Y, Striani E (2015) Pulsar-wind nebulae. Recent progress in observations and theory. SSRv 191:391–439

    Google Scholar 

  • Kennel CF, Coroniti FV (1984) Magnetohydrodynamic model of crab nebula radiation. ApJ 283:710–730

    Article  ADS  Google Scholar 

  • Lyubarsky YE (2002) On the structure of the inner crab nebula. MNRAS 329:L34–L36

    Article  ADS  Google Scholar 

  • Lyubarsky YE (2003) The termination shock in a striped pulsar wind. MNRAS 345:153

    Article  ADS  Google Scholar 

  • Matheson H, Safi-Harb S (2005) The plerionic supernova remnant G21.5-0.9: In and out. AdSpR 35:1099–1105

    ADS  Google Scholar 

  • Pacini F, Salvati M (1973) On the evolution of supernova remnants. evolution of the magnetic field, particles, content, and luminosity. ApJ 186:249–266

    Article  ADS  Google Scholar 

  • Possenti A, Cerutti R, Colpi M, Mereghetti S (2002) Re-examining the X-ray versus spin-down luminosity correlation of rotation powered pulsars. A&A 387:993–1002

    Article  ADS  Google Scholar 

  • Reynolds SP, Chevalier RA (1984) Evolution of pulsar-driven supernova remnants. ApJ 278:630–648

    Article  ADS  Google Scholar 

  • Romani RW, Shaw MS, Camilo F, Cotter G, Sivakoff GR (2010) The Balmer-dominated bow shock and wind nebula structure of gamma ray pulsar PSR J1741-2054. ApJ 724:908–914

    Article  ADS  Google Scholar 

  • Sironi L, Spitkovsky A (2011) Acceleration of particles at the termination shock of a relativistic striped wind. ApJ 741:39

    Article  ADS  Google Scholar 

  • Sironi L, Spitkovsky A, Arons J (2013) The maximum energy of accelerated particles in relativistic collisionless shocks. ApJ 771:54

    Article  ADS  Google Scholar 

  • Slane P, Chen Y, Schulz NS, Seward FD, Hughes JP, Gaensler BM (2000) Chandra observations of the crab-like supernova remnant G21.5-0.9 ApJ 533:L29–L32

    Google Scholar 

  • Slane P, Helfand DJ, van der Swaluw E, Murray SS (2004) New constraints on the structure and evolution of the pulsar wind nebula 3C 58. ApJ 616:403–413

    Article  ADS  Google Scholar 

  • Slane P, Helfand DJ, Reynolds SP, Gaensler BM, Lemiere A, Wang Z (2008) The infrared detection of the pulsar wind nebula in the galactic supernova remnant 3C 58. ApJ 676:L33

    Article  ADS  Google Scholar 

  • Tang X, Chevalier RA (2012) Particle transport in young pulsar wind nebulae ApJ 752:83

    Google Scholar 

  • Temim T, Gehrz RD, Woodward CE, Roellig TL, Smith N, Rudnick L et al (2006) Spitzer space telescope infrared imaging and spectroscopy of the crab nebula. AJ 132:1610–1623

    Article  ADS  Google Scholar 

  • Temim T, Slane P, Reynolds SP, Raymond JC, Borkowski KJ (2010) Deep chandra observations of the crab-like pulsar wind nebula G54.1+0.3 and spitzer spectroscopy of the associated infrared shell. ApJ 710:309–324

    Article  ADS  Google Scholar 

  • Temim T, Slane P, Castro D, Plucinsky PP, Gelfand J, Dickel JR (2013) High-energy emission from the composite supernova remnant MSH 15–56. ApJ 768:61

    Article  ADS  Google Scholar 

  • Temim T, Slane P, Kolb C, Blondin J, Hughes JP, Bucciantini N (2015) Late-time evolution of composite supernova remnants: deep chandra observations and hydrodynamical modeling of a crushed pulsar wind nebula in SNR G327.1-1.1. ApJ 799:158

    Google Scholar 

  • Timokhin AN, Harding AK (2015) On the polar cap cascade pair multiplicity of young pulsars. ApJ 810:144

    Article  ADS  Google Scholar 

  • Torres D, Martín J, de O\(\tilde{n}\) a Wilhelmi E, Cillis A (2013) The effects of magnetic field, age and intrinsic luminosity on crab-like pulsar wind nebulae. MNRAS 436:3112–3127

    Google Scholar 

  • van der Swaluw E (2003) Interaction of a magnetized pulsar wind with its surroundings. MHD simulations of pulsar wind nebulae. A&A 404:939–947

    Google Scholar 

  • Van Etten A, Romani RW (2011) Multi-zone modeling of the pulsar wind nebula HESS J1825-137. ApJ 742:62

    Article  ADS  Google Scholar 

  • Verbiest JPW, Bailes M, van Straten W, Hobbs GB, Edwards RT, Manchester RN et al (2008) Precision timing of PSR J0437-4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant. ApJ 679:675–680

    Article  ADS  Google Scholar 

  • Wilkin FP (1996) Exact analytic solutions for stellar wind bow shocks. ApJ 459:L31

    Article  ADS  Google Scholar 

  • Yang H, Chevalier RC (2015) Evolution of the crab nebula in a low energy supernova ApJ 806:153

    Google Scholar 

  • Zajczyk A, Gallant YA, Slane P, Reynolds SP, Bandiera R, Gouiffès C (2012) Infrared imaging and polarimetric observations of the pulsar wind nebula in SNR G21.5-0.9. A&A 542:A12

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the many colleagues with whom he has collaborated on studies that have been briefly summarized in this Handbook contribution. Partial support for this effort was provided by NASA Contract NAS8-03060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Slane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Slane, P. (2017). Pulsar Wind Nebulae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_95

Download citation

Publish with us

Policies and ethics