Skip to main content

Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

Core-collapse supernovae liberate an energy equivalent to the binding energy of the newly formed neutron star by emitting ∼1058 neutrinos of all flavors with typical energies of ∼10 MeV. These neutrinos are responsible for a matter outflow from the proto-neutron star known as the neutrino-driven wind. The nucleosynthesis in the wind is very sensitive to the proton-to-nucleon ratio that is determined by spectral differences between ν e and \(\bar{\nu }_{e}\). Current simulations taking into account recent progress in the description of high-density neutrino- matter interactions predict very similar spectra for all neutrino flavors. Hence, the ejecta are mainly proton-rich during the whole deleptonization phase and allow for the operation of the νp-process. As neutrinos travel through the stellar mantle, they can induce spallation reactions with abundant nuclei. This leads to the ν-process that synthesizes 11B, 19F, 138La, and 180Ta and enhances the yields of several long-lived radioactive nuclei. During their propagation, neutrinos can suffer flavor oscillations that can also potentially affect the nucleosynthesis in the ejecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson BD, Tamimi N, Baldwin AR, Elaasar M, Madey R, Manley DM, Mostajabodda’vati M, Watson JW, Zhang WM, Foster CC (1991) Gamow-Teller strength in the (p, n) reaction at 136 MeV on 20Ne, 24Mg, and 28Si. Phys Rev C 43:50–58. doi:10.1103/PhysRevC.43.50

    Article  ADS  Google Scholar 

  • Arcones A, Thielemann FK (2013) Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J Phys G Nucl Part Phys 40:013,201. doi:10.1088/0954-3899/40/1/013201

    Article  Google Scholar 

  • Arcones A, Janka HT, Scheck L (2007) Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations. Astron Astrophys 467:1227–1248. doi:10.1051/0004-6361:20066983

    Article  ADS  Google Scholar 

  • Arcones A, Martínez-Pinedo G, O’Connor E, Schwenk A, Janka H, Horowitz CJ, Langanke K (2008) Influence of light nuclei on neutrino-driven supernova outflows. Phys Rev C 78:015806. doi:10.1103/PhysRevC.78.015806

    Article  ADS  Google Scholar 

  • Arcones A, Fröhlich C, Martínez-Pinedo G (2012) Impact of supernova dynamics on the νp-process. Astrophys J 750:18. doi:10.1088/0004-637X/750/1/18

    Article  ADS  Google Scholar 

  • Arnould M, Goriely S (2003) The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys Rep 384:1–84. doi:10.1016/S0370-1573(03)00242-4

    Article  ADS  Google Scholar 

  • Audi G, Wapstra AH, Thibault C (2003) The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl Phys A 729:337–676. doi:10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  • Auerbach LB, Burman RL, Caldwell DO, Church ED, Donahue JB, Fazely A, Garvey GT, Gunasingha RM, Imlay R, Louis WC, Majkic R, Malik A, Metcalf W, Mills GB, Sandberg V, Smith D, Stancu I, Sung M, Tayloe R, VanDalen GJ, Vernon W, Wadia N, White DH, Yellin S, Collaboration TL (2001) Measurements of charged current reactions of ν e on 12C. Phys Rev C 64:065501. doi:10.1103/PhysRevC.64.065501

    Article  ADS  Google Scholar 

  • Austin SM, Heger A, Tur C (2011) 11B and constraints on neutrino oscillations and spectra from neutrino nucleosynthesis. Phys Rev Lett 106:152501. doi:10.1103/PhysRevLett.106.152501

  • Austin SM, West C, Heger A (2014) Effective Helium burning rates and the production of the neutrino nuclei. Phys Rev Lett 112:111101. doi:10.1103/PhysRevLett.112.111101

    Article  ADS  Google Scholar 

  • Balasi K, Langanke K, Martínez-Pinedo G (2015) Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis. Prog Part Nucl Phys 85:33–81. doi:10.1016/j.ppnp.2015.08.001

    Article  ADS  Google Scholar 

  • Banerjee P, Haxton WC, Qian YZ (2011) Long, cold, early r process? Neutrino-induced nucleosynthesis in He shells revisited. Phys Rev Lett 106:201,104. doi:10.1103/PhysRevLett.106.201104

    Article  Google Scholar 

  • Banerjee P, Qian YZ, Haxton WC, Heger A (2013) New primary mechanisms for the synthesis of rare 9Be in early supernovae. Phys Rev Lett 110:141101. doi:10.1103/PhysRevLett.110.141101

    Article  ADS  Google Scholar 

  • Bartl A, Pethick CJ, Schwenk A (2014) Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates. Phys Rev Lett 113:081101. doi:10.1103/PhysRevLett.113.081101

    Article  ADS  Google Scholar 

  • Belic D, Arlandini C, Besserer J, de Boer J, Carroll JJ, Enders J, Hartmann T, Käppeler F, Kaiser H, Kneissl U, Kolbe E, Langanke K, Loewe M, Maier HJ, Maser H, Mohr P, von Neumann-Cosel P, Nord A, Pitz HH, Richter A, Schumann M, Thielemann FK, Volz S, Zilges A (2002) Photo-induced depopulation of the 180Tam isomer via low-lying intermediate states: structure and astrophysical implications. Phys Rev C 65:035,801. doi:10.1103/PhysRevC.65.035801

    Article  Google Scholar 

  • Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801–866. doi:10.1103/RevModPhys.62.801

    Article  ADS  Google Scholar 

  • Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys J 584:971–980. doi:10.1086/345812

    Article  ADS  Google Scholar 

  • Bodmann B, Booth N, Drexlin G, Eberhard V, Edgington J, Eitel K, Ferstl M, Finckh E, Gemmeke H, Grandegger W, Hößl J, Kleifges M, Kleinfeller J, Kretschmer W, Maschuw R, Plischke P, Rapp J, Schilling F, Seligmann B, Stumm O, Wolf J, Wölfle S, Zeitnitz B (1994) Neutrino interactions with carbon: recent measurements and a new test of ν e , ν μ universality. Phys Lett B 332(3):251–257. doi:10.1016/0370-2693(94)91250-5

    Article  ADS  Google Scholar 

  • Bruenn SW (1985) Stellar core collapse: numerical model and infall epoch. Astrophys J Suppl 58:771–841. doi:10.1086/191056

    Article  ADS  Google Scholar 

  • Buras R, Rampp M, Janka HT, Kifonidis K (2006) Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star. Astron Astrophys 447:1049–1092. doi:10.1051/0004-6361:20053783

    Article  ADS  Google Scholar 

  • Burrows A (1990) Neutrinos from supernova explosions. Ann Rev Nucl Part Sci 40:181–212. doi:10.1146/annurev.nucl.40.1.181

    Article  ADS  Google Scholar 

  • Burrows A, Reddy S, Thompson TA (2006) Neutrino opacities in nuclear matter. Nucl Phys A 777:356–394. doi:10.1016/j.nuclphysa.2004.06.012

    Article  ADS  Google Scholar 

  • Byelikov A, Adachi T, Fujita H, Fujita K, Fujita Y, Hatanaka K, Heger A, Kalmykov Y, Kawase K, Langanke K, Martínez-Pinedo G, Nakanishi K, von Neumann-Cosel P, Neveling R, Richter A, Sakamoto N, Sakemi Y, Shevchenko A, Shimbara Y, Shimizu Y, Smit FD, Tameshige Y, Tamii A, Woosley SE, Yosoi M (2007) Gamow-Teller strength in the exotic odd-odd nuclei 138La and 180Ta and its relevance for neutrino nucleosynthesis. Phys Rev Lett 98:082501. doi:10.1103/PhysRevLett.98.082501

    Article  ADS  Google Scholar 

  • Cayrel R, Depagne E, Spite M, Hill V, Spite F, François P, Plez B, Beers T, Primas F, Andersen J, Barbuy B, Bonifacio P, Molaro P, Nordström B (2004) First stars V – abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron Astrophys 416:1117–1138

    Article  ADS  Google Scholar 

  • Chakraborty S, Hansen R, Izaguirre I, Raffelt G (2016) Collective neutrino flavor conversion: recent developments. Nucl Phys B 908:366–381. doi:10.1016/j.nuclphysb.2016.02.012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Diehl R (2013) Cosmic gamma-ray spectroscopy. Astron Rev 8(3):19–65

    Article  ADS  Google Scholar 

  • Domogatsky GV, Nadyozhin DK (1980) Neutrino-induced production of radioactive 26Al. Sov Astron Lett 6:127–130

    ADS  Google Scholar 

  • Domogatsky GV, Eramzhyan RA, Nadyozhin DK (1978) Production of the light elements due to neutrinos emitted by collapsing stellar cores. Astrophys Space Sci 58:273–299. doi:10.1007/BF00644517

    Article  ADS  Google Scholar 

  • Drischler C, Somà V, Schwenk A (2014) Microscopic calculations and energy expansions for neutron-rich matter. Phys Rev C 89:025806. doi:10.1103/PhysRevC.89.025806

    Article  ADS  Google Scholar 

  • Duan H, Kneller JP (2009) Neutrino flavour transformation in supernovae. J Phys G Nucl Part Phys 36(11):113,201. doi:10.1088/0954-3899/36/11/113201

    Article  Google Scholar 

  • Duan H, Fuller GM, Carlson J, Qian YZ (2006) Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: correlated neutrino trajectories. Phys Rev D 74:105014. doi:10.1103/PhysRevD.74.105014

    Article  ADS  Google Scholar 

  • Duan H, Fuller GM, Qian Y (2010) Collective neutrino oscillations. Ann Rev Nucl Part Sci 60:569–594. doi:10.1146/annurev.nucl.012809.104524

    Article  ADS  Google Scholar 

  • Duan H, Friedland A, McLaughlin GC, Surman R (2011) The influence of collective neutrino oscillations on a supernova r process. J Phys G Nucl Part Phys 38:035,201. doi:10.1088/0954-3899/38/3/035201

    Article  Google Scholar 

  • Duncan RC, Shapiro SL, Wasserman I (1986) Neutrino-driven winds from young, hot neutron stars. Astrophys J 309:141–160. doi:10.1086/164587

    Article  ADS  Google Scholar 

  • Fallis J, Clark JA, Sharma KS, Savard G, Buchinger F, Caldwell S, Chaudhuri A, Crawford JE, Deibel CM, Gulick S, Hecht AA, Lascar D, Lee JKP, Levand AF, Li G, Lundgren BF, Parikh A, Russell S, Scholte-van de Vorst M, Scielzo ND, Segel RE, Sharma H, Sinha S, Sternberg MG, Sun T, Tanihata I, Van Schelt J, Wang JC, Wang Y, Wrede C, Zhou Z (2011) Mass measurements of isotopes of Nb, Mo, Tc, Ru, and Rh along the νp- and rp-process paths using the Canadian Penning trap mass spectrometer. Phys Rev C 84:045,807. doi:10.1103/PhysRevC.84.045807

    Article  Google Scholar 

  • Fischer T, Whitehouse SC, Mezzacappa A, Thielemann FK, Liebendörfer M (2010) Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron Astrophys 517:A80. doi:10.1051/0004-6361/200913106

    Article  MATH  Google Scholar 

  • Fischer T, Martínez-Pinedo G, Hempel M, Liebendörfer M (2012) Neutrino spectra evolution during proto-neutron star deleptonization. Phys Rev D 85:083003. doi:10.1103/PhysRevD.85.083003

    Article  ADS  Google Scholar 

  • Fischer T, Langanke K, Martínez-Pinedo G (2013) Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations. Phys Rev C 88:065,804. doi:10.1103/PhysRevC.88.065804

    Article  Google Scholar 

  • Fischer T, Martínez-Pinedo G, Hempel M, Huther L, Röpke G, Typel S, Lohs A (2016) Expected impact from weak reactions with light nuclei in corecollapse supernova simulations. Eur Phys J Web Conf 109:06002. doi:10.1051/epjconf/201610906002

    Article  Google Scholar 

  • Fröhlich C, Rauscher T (2012) Reaction rate uncertainties and the ν p-process. In: Kubono S, Hayakawa T, Kajino T, Miyatake H, Motobayashi T, Nomoto K (eds) American Institute of Physics Conference Series, vol 1484, pp 232–239. doi:10.1063/1.4763400

  • Fröhlich C, Hauser P, Liebendörfer M, Martínez-Pinedo G, Thielemann FK, Bravo E, Zinner NT, Hix WR, Langanke K, Mezzacappa A, Nomoto K (2006a) Composition of the innermost supernova ejecta. Astrophys J 637:415–426. doi:10.1086/498224

    Article  ADS  Google Scholar 

  • Fröhlich C, Martínez-Pinedo G, Liebendörfer M, Thielemann FK, Bravo E, Hix WR, Langanke K, Zinner NT (2006b) Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp-process. Phys Rev Lett 96:142502. doi:10.1103/PhysRevLett.96.142502

    Article  ADS  Google Scholar 

  • Fujita Y, Shimbara Y, Lisetskiy AF, Adachi T, Berg GPA, von Brentano P, Fujimura H, Fujita H, Hatanaka K, Kamiya J, Kawabata T, Nakada H, Nakanishi K, Shimizu Y, Uchida M, Yosoi M (2003) Analogous Gamow-Teller and M1 transitions in 26Mg, 26Al, and 26Si. Phys Rev C 67:064,312. doi:10.1103/PhysRevC.67.064312

    Article  Google Scholar 

  • Gazit D, Barnea N (2007) Low-energy inelastic neutrino reactions on [sup 4]he. Phys Rev Lett 98(19):192501. doi:10.1103/PhysRevLett.98.192501

    Article  ADS  Google Scholar 

  • Giunti C (2016) Light sterile neutrinos: status and perspectives. Nucl Phys B 908:336–353. doi:10.1016/j.nuclphysb.2016.01.013

    Article  ADS  Google Scholar 

  • Goriely S, Arnould M, Borzov I, Rayet M (2001) The puzzle of the synthesis of the rare nuclide 138La. Astron Astrophys 375:L35–L38. doi:10.1051/0004-6361:20010956

    Article  ADS  Google Scholar 

  • Gratton RG, Sneden C (1991) Abundances of elements of the Fe-group in metal-poor stars. Astron Astrophys 241:501–525

    ADS  Google Scholar 

  • Haensel P, Potekhin AY, Yakovlev DG (2007) Neutron stars 1: equation of state and structure, astrophysics and space science library, vol 326. Springer, New York. doi:10.1007/978-0-387-47301-7

    Article  ADS  Google Scholar 

  • Haettner E, Ackermann D, Audi G, Blaum K, Block M, Eliseev S, Fleckenstein T, Herfurth F, Heßberger FP, Hofmann S, Ketelaer J, Ketter J, Kluge HJ, Marx G, Mazzocco M, Novikov YN, Plaß WR, Rahaman S, Rauscher T, Rodríguez D, Schatz H, Scheidenberger C, Schweikhard L, Sun B, Thirolf PG, Vorobjev G, Wang M, Weber C (2011) Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis. Phys Rev Lett 106:122,501. doi:10.1103/PhysRevLett.106.122501

    Article  Google Scholar 

  • Hannestad S, Raffelt G (1998) Supernova neutrino opacity from nucleon-nucleon bremsstrahlung and related processes. Astrophys J 507:339–352. doi:10.1086/306303

    Article  ADS  Google Scholar 

  • Hayakawa T, Mohr P, Kajino T, Chiba S, Mathews GJ (2010) Reanalysis of the (J = 5) state at 592 keV in 180Ta and its role in the ν-process nucleosynthesis of 180Ta in supernovae. Phys Rev C 82:058,801. doi:10.1103/PhysRevC.82.058801

    Article  Google Scholar 

  • Heger A, Woosley SE (2010) Nucleosynthesis and evolution of massive metal-free stars. Astrophys J 724:341–373. doi:10.1088/0004-637X/724/1/341

    Article  ADS  Google Scholar 

  • Heger A, Kolbe E, Haxton W, Langanke K, Martínez-Pinedo G, Woosley SE (2005) Neutrino nucleosynthesis. Phys Lett B 606:258–264. doi:10.1016/j.physletb.2004.12.017

    Article  ADS  Google Scholar 

  • Hempel M, Schaffner-Bielich J (2010) A statistical model for a complete supernova equation of state. Nucl Phys A 837:210–254. doi:10.1016/j.nuclphysa.2010.02.010

    Article  ADS  Google Scholar 

  • Hirata K, Kajita T, Koshiba M, Nakahata M, Oyama Y (1987) Observation of a neutrino burst from the supernova SN 1987A. Phys Rev Lett 58:1490–1493. doi:10.1103/PhysRevLett.58.1490

    Article  ADS  Google Scholar 

  • Hoffman RD, Woosley SE, Fuller GM, Meyer BS (1996) Production of the light p-process nuclei in neutrino-driven winds. Astrophys J 460:478–488. doi:10.1086/176986

    Article  ADS  Google Scholar 

  • Hoffman RD, Woosley SE, Qian YZ (1997) Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys J 482:951–962. doi:10.1086/304181

    Article  ADS  Google Scholar 

  • Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan SG (2006) Neutron-capture elements in the very metal poor star HD 122563. Astrophys J 643:1180–1189. doi:10.1086/503195

    Article  ADS  Google Scholar 

  • Horowitz CJ (2002) Weak magnetism for antineutrinos in supernovae. Phys Rev D 65:043,001. doi:10.1103/PhysRevD.65.043001

    Article  Google Scholar 

  • Hüdepohl L, Müller B, Janka H, Marek A, Raffelt GG (2010) Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys Rev Lett 104(25):251101. doi:10.1103/PhysRevLett.104.251101

    Article  ADS  Google Scholar 

  • Janka HT (2012) Explosion mechanisms of core-collapse supernovae. Ann Rev Nucl Part Sci 62:407–451. doi:10.1146/annurev-nucl-102711-094901

    Article  ADS  Google Scholar 

  • Janka HT, Langanke K, Marek A, Martínez-Pinedo G, Müller B (2007) Theory of core-collapse supernovae. Phys Rep 442:38–74. doi:10.1016/j.physrep.2007.02.002

    Article  ADS  Google Scholar 

  • Janka HT, Melson T, Summa A (2016) Physics of core-collapse supernovae in three dimensions: a sneak preview. ArXiv e-prints 1602.05576

    Google Scholar 

  • Keil MT, Raffelt GG, Janka HT (2003) Monte carlo study of supernova neutrino spectra formation. Astrophys J 590:971–991. doi:10.1086/375130

    Article  ADS  Google Scholar 

  • Kienle P, Faestermann T, Friese J, Körner HJ, Münch M, Schneider R, Stolz A, Wefers E, Geissel H, Münzenberg G, Schlegel C, Sümmerer K, Weick H, Hellström M, Thirolf P (2001) Synthesis and halflives of heavy nuclei relevant for the rp-process. Prog Part Nucl Phys 46:73–78. doi:10.1016/S0146-6410(01)00109-0

    Article  ADS  Google Scholar 

  • Koshiba M (1992) Observational neutrino astrophysics. Phys Rep 220:229–381. doi:10.1016/0370-1573(92)90083-C

    Article  ADS  Google Scholar 

  • Krüger T, Tews I, Hebeler K, Schwenk A (2013) Neutron matter from chiral effective field theory interactions. Phys Rev C 88:025802. doi:10.1103/PhysRevC.88.025802

    Article  ADS  Google Scholar 

  • Langanke K, Martínez-Pinedo G (2003) Nuclear weak-interaction processes in stars. Rev Mod Phys 75:819–862. doi:10.1103/RevModPhys.75.819

    Article  ADS  Google Scholar 

  • Langanke K, Martínez-Pinedo G, Müller B, Janka HT, Marek A, Hix WR, Juodagalvis A, Sampaio JM (2008) Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra. Phys Rev Lett 100:011,101. doi:10.1103/PhysRevLett.100.011101

    Article  Google Scholar 

  • Lattimer JM, Lim Y (2013) Constraining the symmetry parameters of the nuclear interaction. Astrophys J 771:51. doi:10.1088/0004-637X/771/1/51

    Article  ADS  Google Scholar 

  • Lattimer JM, Swesty FD (1991) A generalized equation of state for hot, dense matter. Nucl Phys A 535:331–376

    Article  ADS  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  ADS  Google Scholar 

  • Martínez-Pinedo G, Ziebarth B, Fischer T, Langanke K (2011) Effect of collective neutrino flavor oscillations on vp-process nucleosynthesis. Eur Phys J A 47(8):1–5. doi:10.1140/epja/i2011-11098-y

    Article  Google Scholar 

  • Martínez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109:251,104. doi:10.1103/PhysRevLett.109.251104

    Article  Google Scholar 

  • Martínez-Pinedo G, Fischer T, Huther L (2014) Supernova neutrinos and nucleosynthesis. J Phys G Nucl Part Phys 41(4):044,008. doi:10.1088/0954-3899/41/4/044008

    Article  Google Scholar 

  • McLaughlin GC, Fetter JM, Balantekin AB, Fuller GM (1999) Active-sterile neutrino transformation solution for r-process nucleosynthesis. Phys Rev C 59:2873–2887. doi:10.1103/PhysRevC.59.2873

    Article  ADS  Google Scholar 

  • Meyer BS, McLaughlin GC, Fuller GM (1998) Neutrino capture and r-process nucleosynthesis. Phys Rev C 58:3696–3710. doi:10.1103/PhysRevC.58.3696

    Article  ADS  Google Scholar 

  • Mikheyev SP, Smirnov AY (1985) Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Yadernaya Fizika 42:1441–1448

    ADS  Google Scholar 

  • Nunokawa H, Peltoniemi JT, Rossi A, Valle JWF (1997) Supernova bounds on resonant active-sterile neutrino conversions. Phys Rev D 56:1704–1713. doi:10.1103/PhysRevD.56.1704

    Article  ADS  Google Scholar 

  • Olive KA, Agashe K, Amsler C, Antonelli M, Arguin JF, Asner DM et al (2014) Review of Particle Physics. Chin Phys C 38:090001. doi:10.1088/1674-1137/38/9/090001. http://pdg.lbl.gov

  • Pllumbi E, Tamborra I, Wanajo S, Janka HT, Hüdepohl L (2015) Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova. Astrophys J 808:188. doi:10.1088/0004-637X/808/2/188

    Article  ADS  Google Scholar 

  • Pruet J, Woosley SE, Buras R, Janka HT, Hoffman RD (2005) Nucleosynthesis in the hot convective bubble in core-collapse supernovae. Astrophys J 623:325–336. doi:10.1086/428281

    Article  ADS  Google Scholar 

  • Pruet J, Hoffman RD, Woosley SE, Janka HT, Buras R (2006) Nucleosynthesis in early supernova winds II: The role of neutrinos. Astrophys J 644:1028–1039. doi:10.1086/503891

    Article  ADS  Google Scholar 

  • Qian YZ (2003) The origin of the heavy elements: recent progress in the understanding of the r-process. Prog Part Nucl Phys 50:153–199. doi:10.1016/S0146-6410(02)00178-3

    Article  ADS  Google Scholar 

  • Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331–351. doi:10.1086/177973

    Article  ADS  Google Scholar 

  • Raffelt GG (2001) Mu- and tau-neutrino spectra formation in supernovae. Astrophys J 561:890–914. doi:10.1086/323379

    Article  ADS  Google Scholar 

  • Reddy S, Prakash M, Lattimer JM (1998) Neutrino interactions in hot and dense matter. Phys Rev D 58:013,009. doi:10.1103/PhysRevD.58.013009

    Article  Google Scholar 

  • Roberts LF, Reddy S, Shen G (2012) Medium modification of the charged-current neutrino opacity and its implications. Phys Rev C 86(6):065803. doi:10.1103/PhysRevC.86.065803

    Article  ADS  Google Scholar 

  • Roberts LF, Shen G, Cirigliano V, Pons JA, Reddy S, Woosley SE (2012) Protoneutron star cooling with convection: the effect of the symmetry energy. Phys Rev Lett 108:061,103. doi:10.1103/PhysRevLett.108.061103

    Article  Google Scholar 

  • Roederer IU, Lawler JE, Sobeck JS, Beers TC, Cowan JJ, Frebel A, Ivans II, Schatz H, Sneden C, Thompson IB (2012) New hubble space telescope observations of heavy elements in four metal-poor stars. Astrophys J Suppl 203:27. doi:10.1088/0067-0049/203/2/27

    Article  ADS  Google Scholar 

  • Rrapaj E, Holt JW, Bartl A, Reddy S, Schwenk A (2015) Charged-current reactions in the supernova neutrino-sphere. Phys Rev C 91:035806. doi:10.1103/PhysRevC.91.035806

    Article  ADS  Google Scholar 

  • Schatz H, Aprahamian A, Görres J, Wiescher M, Rauscher T, Rembges JF, Thielemann FK, Pfeiffer B, Möller P, Kratz KL, Herndl H, Brown BA, Rebel H (1998) rp-process nucleosynthesis at extreme temperature and density conditions. Phys Rep 294:167–263

    Article  ADS  Google Scholar 

  • Seitenzahl IR, Timmes FX, Marin-Laflèche A, Brown E, Magkotsios G, Truran J (2008) Proton-rich nuclear statistical equilibrium. Astrophys J 685:L129–L132. doi:10.1086/592501

    Article  ADS  Google Scholar 

  • Seitenzahl IR, Timmes FX, Magkotsios G (2014) The light curve of SN 1987A revisited: constraining production masses of radioactive nuclides. Astrophys J 792:10. doi:10.1088/0004-637X/792/1/10

    Article  ADS  Google Scholar 

  • Shen H, Toki H, Oyamatsu K, Sumiyoshi K (1998) Relativistic equation of state of nuclear matter for supernova and neutron star. Nucl Phys A 637:435–450

    Article  ADS  Google Scholar 

  • Sieverding A, Huther L, Langanke K, Martínez-Pinedo G, Heger A (2015) Neutrino nucleosynthesis of radioactive nuclei in supernovae. ArXiv e-prints [astro-ph.HE]1505.01082

    Google Scholar 

  • Simon A, Spyrou A, Rauscher T, Fröhlich C, Quinn SJ, Battaglia A, Best A, Bucher B, Couder M, DeYoung PA, Fang X, Görres J, Kontos A, Li Q, Lin LY, Long A, Lyons S, Roberts A, Robertson D, Smith K, Smith MK, Stech E, Stefanek B, Tan WP, Tang XD, Wiescher M (2013) Systematic study of (p, γ) reactions on Ni isotopes. Phys Rev C 87:055,802. doi:10.1103/PhysRevC.87.055802

    Article  Google Scholar 

  • Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288. doi:10.1146/annurev.astro.46.060407.145207

    Article  ADS  Google Scholar 

  • Strumia A, Vissani F (2003) Precise quasielastic neutrino/nucleon cross-section. Phys Lett B 564:42–54. doi:10.1016/S0370-2693(03)00616-6

    Article  ADS  Google Scholar 

  • Suzuki T, Kajino T (2013) Element synthesis in the supernova environment and neutrino oscillations. J Phys G: Nucl Part Phys 40(8):083101. doi:10.1088/0954-3899/40/8/083101

    Article  ADS  Google Scholar 

  • Suzuki T, Chiba S, Yoshida T, Kajino T, Otsuka T (2006) Neutrino-nucleus reactions based on new shell model Hamiltonians. Phys Rev C 74:034307. doi:10.1103/PhysRevC.74.034307

    Article  ADS  Google Scholar 

  • Takahashi K, Witti J, Janka HT (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron Astrophys 286:857–869

    ADS  Google Scholar 

  • Tamborra I, Hanke F, Müller B, Janka HT, Raffelt G (2013) Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys Rev Lett 111:121,104. doi:10.1103/PhysRevLett.111.121104

    Article  Google Scholar 

  • Thielemann FK, Nomoto K, Hashimoto M (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408–436. doi:10.1086/176980

    Article  ADS  Google Scholar 

  • Thompson TA, Burrows A, Meyer BS (2001) The physics of Proto-neutron star winds: implications for r-process nucleosynthesis. Astrophys J 562:887–908. doi:10.1086/323861

    Article  ADS  Google Scholar 

  • Timmes FX, Woosley SE, Hartmann DH, Hoffman RD, Weaver TA, Matteucci F (1995) 26al and 60fe from supernova explosions. Astrophys J 449:204. doi:10.1086/176046

    Article  ADS  Google Scholar 

  • Tu XL, Xu HS, Wang M, Zhang YH, Litvinov YA, Sun Y, Schatz H, Zhou XH, Yuan YJ, Xia JW, Audi G, Blaum K, Du CM, Geng P, Hu ZG, Huang WX, Jin SL, Liu LX, Liu Y, Ma X, Mao RS, Mei B, Shuai P, Sun ZY, Suzuki H, Tang SW, Wang JS, Wang ST, Xiao GQ, Xu X, Yamaguchi T, Yamaguchi Y, Yan XL, Yang JC, Ye RP, Zang YD, Zhao HW, Zhao TC, Zhang XY, Zhan WL (2011) Direct mass measurements of short-lived A = 2Z − 1 Nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rp process. Phys Rev Lett 106:112,501. doi:10.1103/PhysRevLett.106.112501

    Article  Google Scholar 

  • Typel S, Röpke G, Klähn T, Blaschke D, Wolter HH (2010) Composition and thermodynamics of nuclear matter with light clusters. Phys Rev C 81:015,803. doi:10.1103/PhysRevC.81.015803

    Article  Google Scholar 

  • Wanajo S (2006) The rp-process in neutrino-driven winds. Astrophys J 647:1323–1340. doi:10.1086/505483

    Article  ADS  Google Scholar 

  • Wanajo S, Janka HT, Kubono S (2011) Uncertainties in the νp-process: supernova dynamics versus nuclear physics. Astrophys J 729:46. doi:10.1088/0004-637X/729/1/46

    Article  ADS  Google Scholar 

  • Wanajo S, Janka HT, Müller B (2011) Electron-capture supernovae as the origin of elements beyond iron. Astrophys J 726(2):L15. doi:10.1088/2041-8205/726/2/L15

    Article  ADS  Google Scholar 

  • Weber C, Elomaa VV, Ferrer R, Fröhlich C, Ackermann D, Äystö J, Audi G, Batist L, Blaum K, Block M, Chaudhuri A, Dworschak M, Eliseev S, Eronen T, Hager U, Hakala J, Herfurth F, Heßberger FP, Hofmann S, Jokinen A, Kankainen A, Kluge HJ, Langanke K, Martín A, Martínez-Pinedo G, Mazzocco M, Moore ID, Neumayr JB, Novikov YN, Penttilä H, Plaß WR, Popov AV, Rahaman S, Rauscher T, Rauth C, Rissanen J, Rodríguez D, Saastamoinen A, Scheidenberger C, Schweikhard L, Seliverstov DM, Sonoda T, Thielemann FK, Thirolf PG, Vorobjev GK (2008) Mass measurements in the vicinity of the rp-process and the νp-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP. Phys Rev C 78:054310. doi:10.1103/PhysRevC.78.054310

    Article  ADS  Google Scholar 

  • Wilson HS, Kavanagh RW, Mann FM (1980) Gamow-Teller transitions in some intermediate-mass nuclei. Phys Rev C 22:1696–1722. doi:10.1103/PhysRevC.22.1696

    Article  ADS  Google Scholar 

  • Wisshak K, Voss F, Arlandini C, Bec̆vár̆ F, Straniero O, Gallino R, Heil M, Käppeler F, Krtic̆ka M, Masera S, Reifarth R, Travaglio C (2001) Neutron capture on 180Tam: clue for an s-process origin of nature’s rarest isotope. Phys Rev Lett 87:251,102. doi:10.1103/PhysRevLett.87.251102

  • Witti J, Janka HT, Takahashi K (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars I. The α-process. Astron Astrophys 286:841–856

    ADS  Google Scholar 

  • Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369–2374. doi:10.1103/PhysRevD.17.2369

    Article  ADS  Google Scholar 

  • Woosley SE, Hoffman RD (1992) The α-process and the r-process. Astrophys J 395:202–239. doi:10.1086/171644

    Article  ADS  Google Scholar 

  • Woosley SE, Hartmann DH, Hoffman RD, Haxton WC (1990) The ν-process. Astrophys J 356:272–301. doi:10.1086/168839

    Article  ADS  Google Scholar 

  • Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The r-process and neutrino-heated supernova ejecta. Astrophys J 433:229–246. doi:10.1086/174638

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071. doi:10.1103/RevModPhys.74.1015

    Article  ADS  Google Scholar 

  • Wu MR, Fischer T, Huther L, Martínez-Pinedo G, Qian YZ (2014) Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis. Phys Rev D 89:061,303(R). doi:10.1103/PhysRevD.89.061303

  • Wu MR, Qian YZ, Martínez-Pinedo G, Fischer T, Huther L (2015) Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model. Phys Rev D 91:065016. doi:10.1103/PhysRevD.91.065016

    Article  ADS  Google Scholar 

  • Yoshida T, Kajino T, Yokomakura H, Kimura K, Takamura A, Hartmann DH (2006) Supernova neutrino nucleosynthesis of light elements with neutrino oscillations. Phys Rev Lett 96:091101. doi:10.1103/PhysRevLett.96.091101

    Article  ADS  Google Scholar 

  • Zegers RGT, Akimune H, Austin SM, Bazin D, Berg AMd, Berg GPA, Brown BA, Brown J, Cole AL, Daito I, Fujita Y, Fujiwara M, Galès S, Harakeh MN, Hashimoto H, Hayami R, Hitt GW, Howard ME, Itoh M, Jänecke J, Kawabata T, Kawase K, Kinoshita M, Nakamura T, Nakanishi K, Nakayama S, Okumura S, Richter WA, Roberts DA, Sherrill BM, Shimbara Y, Steiner M, Uchida M, Ueno H, Yamagata T, Yosoi M (2006) The (t, 3He) and (3He, t) reactions as probes of Gamow-Teller strength. Phys Rev C 74:024309. doi:10.1103/PhysRevC.74.024309

Download references

Acknowledgements

This work was partly supported by the Deutsche Forschungsgemeinschaft through contract SFB 1245, and the Helmholtz Association through the Nuclear Astrophysics Virtual Institute (VH-VI-417). TF acknowledges support by the Polish National Science Center (NCN) under grant number UMO-2013/11/D/ST2/02645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Martínez-Pinedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martínez-Pinedo, G., Fischer, T., Langanke, K., Lohs, A., Sieverding, A., Wu, MR. (2017). Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_78

Download citation

Publish with us

Policies and ethics