Skip to main content

Inference and Verification of Probabilistic Graphical Models from High-Dimensional Data

  • Conference paper
  • First Online:
Data Integration in the Life Sciences (DILS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9162))

Included in the following conference series:

Abstract

Probabilistic graphical modelling technique has been widely used to infer the causal relations in the network from high-dimensional data. One of the most challenging biological questions is the inference and verification of biological network, for example, gene regulatory network and signaling pathway, from high-dimensional omics data. Conditionally dependent genes and undirected network can be inferred from the independently and identically distributed static data, while the time series data can help reconstruct a directed network which is more important to our understanding of the complex biological system. Due to the curse of dimensionality and network sparsity, statistical inference algorithm alone is not efficient and realistic to infer and verify large networks. In this work, we propose a novel technique, which applies the dimensionality reduction, network inference and formal verification methods together to reconstruct some regulatory networks from the static and time-series microarray data. A graphical lasso algorithm is first applied to learn the structure of Gaussian graphical models from static data and infer some conditionally dependent genes. Then, an extended dynamic Bayesian network method is applied to reconstruct some weighted and directed networks from the time series data of selected genes, and also generate symbolic model verification code for model checking. Finally, we apply this technique to reconstruct and verify some regulatory networks in yeast and prostate cancer in response to stress and irradiation respectively for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  2. Celik, S., Logsdon, B., Lee, S.: Efficient dimensionality reduction for high-dimensional network estimation. JMLR 32 (2014)

    Google Scholar 

  3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  5. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using BN to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  6. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th Conference on the Uncertainty in Artificial Intelligence (1998)

    Google Scholar 

  7. Furusato, B., Tan, S., et al.: ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis. 13, 228–237 (2010)

    Article  Google Scholar 

  8. Goel, A., Wilkins, M.R.: Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners. PLoS One 7(10), e48209 (2012)

    Article  Google Scholar 

  9. Gong, H., Klinger, J., Damazyn, K., Li, X., Huang, S.: A novel procedure for statistical inference and verification of gene regulatory subnetwork. BMC Bioinformatics 16(Suppl 7), S7 (2015)

    Article  Google Scholar 

  10. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Computational modeling and verification of signaling pathways in cancer. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 117–135. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Analysis and verification of the HMGB1 signaling pathway. BMC Bioinformatics 11(Supp 7), S10 (2010)

    Article  Google Scholar 

  12. Gong, H.: Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst. Biol. 7, S5 (2013)

    Article  Google Scholar 

  13. Gong, H., Feng, L.: Computational analysis of the roles of ER-Golgi network in the cell cycle. BMC Syst. Biol. 8, S4 (2014)

    Google Scholar 

  14. Gong, H., Feng, L.: Probabilistic verification of ER stress-induced signaling pathways. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (2014)

    Google Scholar 

  15. Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  16. Kim, S., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings Bioinf. 4, 228–235 (2003)

    Article  Google Scholar 

  17. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. BioSystems 75, 57–65 (2004)

    Article  Google Scholar 

  18. Liang, X., Xia, Z., Zhang, L., Wu, F.: Inference of gene regulatory subnetworks from time course gene expression data. BMC Bioinformatics 13, S3 (2012)

    Article  Google Scholar 

  19. Ma, Y., Feng, L., Guo, Y., Gong, H.: Statistical analysis and probabilistic verification of stress-induced signaling pathways. Int. J. Data Min. Bioinf. (2015)

    Google Scholar 

  20. Mazumder, R., Hastie, T.: The graphical lasso: new isights and alternatives. Electron. J. Stat. 6, 2125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. McMillan, K.L.: Ph.D thesis: Symbolic model checking - an approach to the state explosion problem. Carnegie Mellon University (1992)

    Google Scholar 

  22. Ong, I., Glasner, J., Page, D.: Modelling regulatoruypathways in E. coli from time series expression profiles. Bioinformatics 18, S241–S248 (2002)

    Article  Google Scholar 

  23. Ouyang, X., Tran, Q., Goodwin, S., Wible, R., Sutter, C., Sutter, T.: Yap1 activation by H2o2 or thiol-reactive chemicals elicits distinct adaptive gene responses. Free Radic. Biol. Med. 50, 1–13 (2011)

    Article  Google Scholar 

  24. Perrin, B., Ralaivola, L., Mazurie, A., et al.: Gene networks inference using dynamic bayesian networks. Bioinformatics 74, i138–i148 (2003)

    Google Scholar 

  25. Powell, I., Dyson, G., et al.: Genes associated with prostate cancer are differentially expressed in African American and European American men. Cancer Epidemiol. Biomark. Prev. 22, 891–897 (2013)

    Article  Google Scholar 

  26. Rob Smith, R., Ventura, D., Prince, J.: Controlling for confounding variables in MS-omics protocol: why modularity matters. Brief Bioinform. 15(5), 768–770 (2014)

    Article  Google Scholar 

  27. Shoa, T., Tsukiyama, T., et al.: Trim29 negatively regulates p53 via inhibition of Tip60. Mol. Cell Res. 1813, 1245–1253 (2011)

    Google Scholar 

  28. Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by HG’s new faculty start-up grant and President Research Fund award (230152) from the Saint Louis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, Y., Damazyn, K., Klinger, J., Gong, H. (2015). Inference and Verification of Probabilistic Graphical Models from High-Dimensional Data. In: Ashish, N., Ambite, JL. (eds) Data Integration in the Life Sciences. DILS 2015. Lecture Notes in Computer Science(), vol 9162. Springer, Cham. https://doi.org/10.1007/978-3-319-21843-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21843-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21842-7

  • Online ISBN: 978-3-319-21843-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics