Skip to main content

Solving Problems on Graphs of High Rank-Width

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

Abstract

A modulator of a graph G to a specified graph class \({\mathcal H}\) is a set of vertices whose deletion puts G into \({\mathcal H}\). The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain FPT algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but “well-structured” (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently?

We first show that the parameters derived from such well-structured modulators are strictly more general than the cardinality of modulators and rank-width itself. Then, we develop an FPT algorithm for finding such well-structured modulators to any graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for efficiently deciding problems expressible in Monadic Second Order (MSO) logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.

Supported by the Austrian Science Fund (FWF), project P26696.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discr. Appl. Math. 135(1–3), 3–16 (2004)

    Google Scholar 

  2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle problems. Theor. Comput. Sci. 511, 117–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Lozin, V.V.: A note on alpha-redundant vertices in graphs. Discr. Appl. Math. 108(3), 301–308 (2001)

    Article  MATH  Google Scholar 

  4. Cai, L.: Parameterized complexity of vertex colouring. Discr. Appl. Math. 127(3), 415–429 (2003)

    Article  MATH  Google Scholar 

  5. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discr. Appl. Math. 3, 163–174 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diestel, R.: Graph Theory. GTM, vol. 173, 2nd edn. Springer Verlag, New York (2000)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer Verlag (2013)

    Google Scholar 

  10. Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discr. Appl. Math. 158(7), 851–867 (2010)

    Article  MATH  Google Scholar 

  12. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Živný, S.: Backdoors into heterogeneous classes of SAT and CSP. In: Brodley, C.E., Stone, P.(eds.), Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2652–2658. AAAI Press (2014)

    Google Scholar 

  13. Gerber, M.U., Lozin, V.V.: Robust algorithms for the stable set problem. Graphs and Combinatorics 19(3), 347–356 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gioan, E., Paul, C.: Dynamic distance hereditary graphs using split decomposition. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 41–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discr. Appl. Math. 160(6), 708–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gioan, E., Paul, C., Tedder, M., Corneil, D.: Practical and efficient split decomposition via graph-labelled trees. Algorithmica 69(4), 789–843 (2014)

    Article  MathSciNet  Google Scholar 

  17. Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on h-free graphs. Inf. Comput. 237, 204–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hliněný, P., Oum, S.I.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kochol, M., Lozin, V.V., Randerath, B.: The 3-colorability problem on graphs with maximum degree four. SIAM J. Comput. 32(5), 1128–1139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

    Google Scholar 

  21. Lokshantov, D., Vatshelle, M., Villanger, Y.: Independent set in p\(_{\text{5 }}\)-free graphs in polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 570–581. SIAM (2014)

    Google Scholar 

  22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  23. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ganian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Eiben, E., Ganian, R., Szeider, S. (2015). Solving Problems on Graphs of High Rank-Width. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics