Skip to main content

The Elusive Pancreatic Stem Cell

  • Chapter
  • First Online:
Tissue-Specific Stem Cell Niche

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1061 Accesses

Abstract

Whether pancreatic stem cells exist in the embryo or in the adult organ remains a controversial topic. Here, we review embryonic pancreas development, with a focus on the role of pancreatic multipotent progenitor cells during epithelial patterning, cell fate specification, and isletogenesis. Research efforts have recently turned to beta cell regeneration or replacement to treat T1D. Stimulating the expansion of stem or progenitor cells toward a beta cell fate in the adult pancreas, or generating new beta cells in the laboratory, are both major therapeutic goals in the treatment of Type 1 diabetes mellitus (T1D), a burdensome disease with no cure. We apply insights from progenitor cells in embryonic pancreatic development to adult beta cell neogenesis. New adult beta cells have been shown to originate endogenously via self-replication, or via transdifferentiation of other cell types, including acinar, hepatobiliary, or ductal cells. Regenerative approaches to treat diabetes have been successful in rodent models of pancreatic injury, but these regenerative mechanisms may not be conserved in the human pancreas. Bona fide stem cells may not exist in the adult pancreas, but achieving beta cell replacement in the diabetic pancreas appears possible, with recent leaps in induced pluripotent stem cell-derived beta cell technology, as well as current clinical trials of encapsulated beta cell replacement therapy. Abbreviations: Angptl8, angiopoietin like protein 8; BAC, bacterial artificial chromosome; bHLH, basic helix-loop-helix; BM, bone marrow; BrdU, bromodeoxyuridine; CAII, carbonic anhydrase II; Cpa1, carboxypeptidase 1; hESC, human embryonic stem cell; hGO, human gut organoid; Hlxb9, Homeobox HB9; iPSC, induced pluripotent stem cell; KGF, Keratinocyte Growth Factor; MODY4, maturity onset diabetes of the young; MPC, multipotent progenitor cell; MSC, mesenchymal stem cell; Ngn3, Neurogenin3; Nkx6.1, NK6 homeobox 1; PDL, Pancreatic Ductal Ligation; Pdx1, Pancreatic and duodenal homeobox 1; PP, pancreatic polypeptide; Ppx, partial pancreatectomy; RA, retinoic acid; RhoGAP, Rho GTPase Activating Protein; RIPCreERT2, Rat Insulin Promoter Cre Estrogen Receptor Tamoxifen; Sox9, sex determining region Y protein 9; STZ, streptozocin; T1D, Type 1 Diabetes; T2D, Type 2 Diabetes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6.

    Article  CAS  PubMed  Google Scholar 

  3. Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev. 2007;28(6):685–705.

    Article  PubMed  CAS  Google Scholar 

  4. Bonner-Weir S. Perspective: Postnatal pancreatic beta cell growth. Endocrinology. 2000;141(6):1926–9.

    CAS  PubMed  Google Scholar 

  5. Stanger BZ, Tanaka AJ, Melton DA. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature. 2007;445(7130):886–91.

    Article  CAS  PubMed  Google Scholar 

  6. Cano DA, Soria B, Martin F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci: CMLS. 2014;71(13):2383–402.

    Article  CAS  PubMed  Google Scholar 

  7. Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol. 2013;29:81–105.

    Article  CAS  PubMed  Google Scholar 

  8. Slack JM. Developmental biology of the pancreas. Development. 1995;121(6):1569–80.

    CAS  PubMed  Google Scholar 

  9. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol. 1999;15:393–410.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar M, Jordan N, Melton D, Grapin-Botton A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol. 2003;259(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  11. Matsushita S, Ishii Y, Scotting PJ, Kuroiwa A, Yasugi S. Pre-gut endoderm of chick embryos is regionalized by 1.5 days of development. Dev Dyn.: an official publication of the American Association of Anatomists. 2002;223(1):33–47.

    Google Scholar 

  12. Miki R, Yoshida T, Murata K, Oki S, Kume K, Kume S. Fate maps of ventral and dorsal pancreatic progenitor cells in early somite stage mouse embryos. Mech Dev. 2012;128(11–12):597–609.

    Article  CAS  PubMed  Google Scholar 

  13. Villasenor A, Chong DC, Henkemeyer M, Cleaver O. Epithelial dynamics of pancreatic branching morphogenesis. Development. 2010;137(24):4295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen JK, Nelson SB, Jorgensen MC, Henseleit KD, Fujitani Y, Wright CV, et al. Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev Biol. 2005;288(2):487–501.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Pan FC, Brandes N, Afelik S, Solter M, Pieler T. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol. 2004;271(1):144–60.

    Article  CAS  PubMed  Google Scholar 

  17. Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol. 2005;284(2):399–411.

    Article  CAS  PubMed  Google Scholar 

  18. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development. 1997;124(21):4243–52.

    CAS  PubMed  Google Scholar 

  20. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294(5542):564–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, et al. Role of VEGF-A in vascularization of pancreatic islets. Curr Biol : CB. 2003;13(12):1070–4.

    Article  CAS  PubMed  Google Scholar 

  22. Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R. The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes. 2006;55(3):582–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kesavan G, Sand FW, Greiner TU, Johansson JK, Kobberup S, Wu X, et al. Cdc42-mediated tubulogenesis controls cell specification. Cell. 2009;139(4):791–801.

    Article  CAS  PubMed  Google Scholar 

  24. Landsman L, Nijagal A, Whitchurch TJ, Vanderlaan RL, Zimmer WE, Mackenzie TC, et al. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol. 2011;9(9):e1001143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell. 2007;13(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  26. Harding MJ, McGraw HF, Nechiporuk A. The roles and regulation of multicellular rosette structures during morphogenesis. Development. 2014;141(13):2549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petzold KM, Naumann H, Spagnoli FM. Rho signalling restriction by the RhoGAP Stard13 integrates growth and morphogenesis in the pancreas. Development. 2013;140(1):126–35.

    Article  CAS  PubMed  Google Scholar 

  28. Pictet RL, Clark WR, Williams RH, Rutter WJ. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972;29(4):436–67.

    Article  CAS  PubMed  Google Scholar 

  29. Rutter WJ, Kemp JD, Bradshaw WS, Clark WR, Ronzio RA, Sanders TG. Regulation of specific protein synthesis in cytodifferentiation. J Cell Physiol. 1968;72(2):Suppl 1–18.

    Google Scholar 

  30. Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127(11):2317–22.

    CAS  PubMed  Google Scholar 

  31. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CV, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 1995;121(1):11–8.

    CAS  PubMed  Google Scholar 

  32. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    CAS  PubMed  Google Scholar 

  33. Stoffers DA, Thomas MK, Habener JF. Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression. Trends Endocrinol Metab. 1997;8(4):145–51.

    Article  CAS  PubMed  Google Scholar 

  34. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993;12(11):4251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hale MA, Kagami H, Shi L, Holland AM, Elsasser HP, Hammer RE, et al. The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev Biol. 2005;286(1):225–37.

    Article  CAS  PubMed  Google Scholar 

  37. Afelik S, Chen Y, Pieler T. Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev. 2006;20(11):1441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horb ME, Shen CN, Tosh D, Slack JM. Experimental conversion of liver to pancreas. Curr Biol. 2003;13(2):105–15.

    Article  CAS  PubMed  Google Scholar 

  39. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  40. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3 + cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

    CAS  PubMed  Google Scholar 

  41. Villasenor A, Chong DC, Cleaver O. Biphasic Ngn3 expression in the developing pancreas. Dev Dyn : an official publication of the American Association of Anatomists. 2008;237(11):3270–9.

    Article  CAS  Google Scholar 

  42. Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA. 2000;97(4):1607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Magenheim J, Klein AM, Stanger BZ, Ashery-Padan R, Sosa-Pineda B, Gu G, et al. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol. 2011;359(1):26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, et al. Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol. 2010;339(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  45. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell. 2007;12(3):457–65.

    Article  CAS  PubMed  Google Scholar 

  46. Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X, et al. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development. 2004;131(17):4213–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1 + cells to the developing and adult pancreas. Development. 2011;138(3):431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol. 2012;23(6):711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA. 2010;107(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  50. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2 + neural stem cells in the adult hippocampus. Cell Stem Cell. 2007;1(5):515–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9 + ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  54. Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA. 2005;102(5):1490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maestro MA, Boj SF, Luco RF, Pierreux CE, Cabedo J, Servitja JM, et al. Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas. Hum Mol Genet. 2003;12(24):3307–14.

    Article  CAS  PubMed  Google Scholar 

  56. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60.

    Article  CAS  PubMed  Google Scholar 

  57. Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ. Early pancreatic development requires the vertebrate suppressor of hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev. 2007;21(20):2629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  59. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J. 1996;15(16):4317–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 2013;140(4):751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 2008;105(50):19915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ziv O, Glaser B, Dor Y. The plastic pancreas. Dev Cell. 2013;26(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  63. Yanger K, Stanger BZ. Facultative stem cells in liver and pancreas: fact and fancy. Dev Dyn: an official publication of the American Association of Anatomists. 2011;240(3):521–9.

    Article  Google Scholar 

  64. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. Beta-cell growth and regeneration: replication is only part of the story. Diabetes. 2010;59(10):2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass. Physiol Rev. 2005;85(4):1255–70.

    Article  CAS  PubMed  Google Scholar 

  66. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CT. Contribution of a non-beta-cell source to beta-cell mass during pregnancy. PLoS ONE. 2014;9(6):e100398.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, et al. The transcriptional response of the islet to pregnancy in mice. Mol Endocrinol. 2009;23(10):1702–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53(10):2167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferrannini E, Nannipieri M, Williams K, Gonzales C, Haffner SM, Stern MP. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes. 2004;53(1):160–5.

    Article  CAS  PubMed  Google Scholar 

  71. Mezza T, Muscogiuri G, Sorice GP, Clemente G, Hu J, Pontecorvi A, et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes. 2014;63(3):994–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–6.

    Article  CAS  PubMed  Google Scholar 

  73. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–26.

    Article  CAS  PubMed  Google Scholar 

  74. Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA. Very slow turnover of beta-cells in aged adult mice. Diabetes. 2005;54(9):2557–67.

    Article  CAS  PubMed  Google Scholar 

  75. Perl S, Kushner JA, Buchholz BA, Meeker AK, Stein GM, Hsieh M, et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab. 2010;95(10):E234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell. 2013;153(4):747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gusarova V, Alexa Corey A, Na E, Stevis Panayiotis E, Xin Y, Bonner-Weir S, et al. ANGPTL8/Betatrophin does not control pancreatic beta cell expansion. Cell. 159(3):691–6.

    Google Scholar 

  78. Yi P, Park J-S, Melton DA. Perspectives on the activities of ANGPTL8/Betatrophin. Cell. 159(3):467–8.

    Google Scholar 

  79. Stewart AF. Betatrophin versus bitter-trophin and the elephant in the room: time for a new normal in beta-cell regeneration research. Diabetes. 2014;63(4):1198–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Akinci E, Banga A, Greder LV, Dutton JR, Slack JM. Reprogramming of pancreatic exocrine cells towards a beta (beta) cell character using Pdx1, Ngn3 and MafA. Biochem J. 2012;442(3):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Al-Adsani A, Burke ZD, Eberhard D, Lawrence KL, Shen CN, Rustgi AK, et al. Dexamethasone treatment induces the reprogramming of pancreatic acinar cells to hepatocytes and ductal cells. PLoS ONE. 2010;5(10):e13650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32.

    Article  CAS  PubMed  Google Scholar 

  84. Lu J, Jaafer R, Bonnavion R, Bertolino P, Zhang CX. Transdifferentiation of pancreatic alpha-cells into insulin-secreting cells: From experimental models to underlying mechanisms. World J Diabetes. 2014;5(6):847–53.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010;464(7292):1149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell. 2009;16(3):358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yi F, Liu GH. Izpisua Belmonte JC. Rejuvenating liver and pancreas through cell transdifferentiation. Cell Res. 2012;22(4):616–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lipsett M, Finegood DT. beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes. 2002;51(6):1834–41.

    Article  CAS  PubMed  Google Scholar 

  89. Baeyens L, Lemper M, Leuckx G, De Groef S, Bonfanti P, Stange G, et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol. 2014;32(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  90. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem. 2003;278(34):31950–7.

    Article  CAS  PubMed  Google Scholar 

  91. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes. 2005;54(4):1009–22.

    Article  CAS  PubMed  Google Scholar 

  92. Meivar-Levy I, Aviv V, Ferber S. Adult cell reprogramming: Using nonpancreatic cell sources to generate surrogate beta cells for treatment of diabetes. In: Efrat S, editor. Stem cell therapy for diabetes. Stem cell biology and regenerative medicine. Totowa: Humana Press; 2010. p. 183–202.

    Google Scholar 

  93. Wang AY, Ehrhardt A, Xu H, Kay MA. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Therapy : the journal of the American Society of Gene Therapy. 2007;15(2):255–63.

    Article  CAS  Google Scholar 

  94. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6(5):568–72.

    Article  CAS  PubMed  Google Scholar 

  95. Meivar-Levy I, Sapir T, Gefen-Halevi S, Aviv V, Barshack I, Onaca N, et al. Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology. 2007;46(3):898–905.

    Article  CAS  PubMed  Google Scholar 

  96. Shternhall-Ron K, Quintana FJ, Perl S, Meivar-Levy I, Barshack I, Cohen IR, et al. Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. J Autoimmun. 2007;28(2–3):134–42.

    Article  CAS  PubMed  Google Scholar 

  97. Nealon WH, Thompson JC. Progressive loss of pancreatic function in chronic pancreatitis is delayed by main pancreatic duct decompression. A longitudinal prospective analysis of the modified puestow procedure. Ann Surg. 1993;217(5):458–66; discussion 66–8.

    Google Scholar 

  98. Wang RN, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38(12):1405–11.

    Article  CAS  PubMed  Google Scholar 

  99. Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  100. Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. beta-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes. 2013;62(5):1634–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, et al. No evidence for beta cell neogenesis in murine adult pancreas. J Clin Investig. 2013;123(5):2207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes. 1993;42(12):1715–20.

    Google Scholar 

  103. Menge BA, Tannapfel A, Belyaev O, Drescher R, Muller C, Uhl W, et al. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes. 2008;57(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  104. Aathira R, Jain V. Advances in management of type 1 diabetes mellitus. World journal of diabetes. 2014;5(5):689–96.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ : Can Med Assoc J =  journal de l’Association medicale canadienne. 2006;175(2):165–70.

    Google Scholar 

  106. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. 2005;54(7):2060–9.

    Article  CAS  PubMed  Google Scholar 

  107. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New England J Med. 2000;343(4):230–8.

    Article  CAS  Google Scholar 

  108. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012;35(7):1436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Drukker M. Immunological considerations for cell therapy using human embryonic stem cell derivatives. StemBook. Cambridge (MA) 2008.

    Google Scholar 

  110. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Investig. 2003;111(6):843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes. 2004;53(3):616–23.

    Article  CAS  PubMed  Google Scholar 

  112. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53(7):1721–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells. 2007;25(11):2837–44.

    Article  CAS  PubMed  Google Scholar 

  114. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol. 2007;211(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  115. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, et al. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia. 2003;46(10):1366–74.

    Article  CAS  PubMed  Google Scholar 

  116. Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA. 2004;101(8):2458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  118. Schiesser JV, Wells JM. Generation of beta cells from human pluripotent stem cells: are we there yet? Ann NY Acad Sci. 2014;1311:124–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  PubMed  CAS  Google Scholar 

  120. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol. 2011;29(8):750–6.

    Article  CAS  PubMed  Google Scholar 

  121. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.

    Article  CAS  PubMed  Google Scholar 

  122. Motte E, Szepessy E, Suenens K, Stange G, Bomans M, Jacobs-Tulleneers-Thevissen D, et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014;307(9):E838–46.

    Article  CAS  PubMed  Google Scholar 

  123. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.

    Article  CAS  PubMed  Google Scholar 

  124. Szot GL, Yadav M, Lang J, Kroon E, Kerr J, Kadoya K, et al. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell. 2015;16(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  125. Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9(10):598–606.

    Article  CAS  PubMed  Google Scholar 

  126. Jensen J. Gene regulatory factors in pancreatic development. Dev Dyn: an official publication of the American Association of Anatomists. 2004;229(1):176–200.

    Article  CAS  Google Scholar 

  127. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  128. Abdelalim EM, Emara MM. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic beta cells. World J Stem Cell. 2015;7(1):174–81.

    Article  Google Scholar 

  129. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, et al. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011;138(5):861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 2013;31(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  132. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12(2):224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE. 2012;7(5):e37004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stepniewski J, Kachamakova-Trojanowska N, Ogrocki D, Szopa M, Matlok M, Beilharz M, et al. Induced pluripotent stem cells as a model for diabetes investigation. Sci Rep. 2015;5:8597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheng X, Ying L, Lu L, Galvao AM, Mills JA, Lin HC, et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell. 2012;10(4):371–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hrvatin S, O’Donnell CW, Deng F, Millman JR, Pagliuca FW, DiIorio P, et al. Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci USA. 2014;111(8):3038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo SC, et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A. 2014;20(1–2):424–33.

    Article  CAS  PubMed  Google Scholar 

  139. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  140. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther: the journal of the American Society of Gene Therapy. 2009;17(11):1919–28.

    Article  CAS  Google Scholar 

  141. Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, et al. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cell Trans Med. 2012;1(6):451–61.

    Article  CAS  Google Scholar 

  142. Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, et al. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes. 2010;59(10):2530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005;25(12):4969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stolovich-Rain M, Enk J, Vikesa J, Nielsen FC, Saada A, Glaser B, et al. Weaning triggers a maturation step of pancreatic beta cells. Dev Cell. 2015;32(5):535–45.

    Article  CAS  PubMed  Google Scholar 

  145. Bonnavion R, Jaafar R, Kerr-Conte J, Assade F, van Stralen E, Leteurtre E, et al. Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes. PLoS ONE. 2013;8(8):e72194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chung CH, Hao E, Piran R, Keinan E, Levine F. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells. 2010;28(9):1630–8.

    Article  CAS  PubMed  Google Scholar 

  148. Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, et al. Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature. 2014.

    Google Scholar 

  149. Aguayo-Mazzucato C, Zavacki AM, Marinelarena A, Hollister-Lock J, El Khattabi I, Marsili A, et al. Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA. Diabetes. 2013;62(5):1569–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rezania A, Riedel MJ, Wideman RD, Karanu F, Ao Z, Warnock GL, et al. Production of functional glucagon-secreting alpha-cells from human embryonic stem cells. Diabetes. 2011;60(1):239–47.

    Article  CAS  PubMed  Google Scholar 

  151. Thowfeequ S, Ralphs KL, Yu WY, Slack JM, Tosh D. Betacellulin inhibits amylase and glucagon production and promotes beta cell differentiation in mouse embryonic pancreas. Diabetologia. 2007;50(8):1688–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our apologies to those whose work we were not able to cite due to space restrictions. This work was supported by JDRF 3-PDF-2014-202-A-N to CB, and NIH R01 grant DK079862 to OC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondine Cleaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braitsch, C.M., Cleaver, O. (2015). The Elusive Pancreatic Stem Cell. In: Turksen, K. (eds) Tissue-Specific Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21705-5_6

Download citation

Publish with us

Policies and ethics