Skip to main content

The Hematopoietic Stem Cell Niche: Cell-Cell Interactions and Quiescence

  • Chapter
  • First Online:
Biology in Stem Cell Niche

Abstract

Recently much progress has been made in describing the biology of hematopoietic stem cells (HSCs) and their interaction with various components of the niche in which they reside. These components, cellular and structural, have profound implications on HSC maintenance and quiescence. This chapter systematically reviews these interactions organized by cell type, niche component, or physiological condition. Cell type interactions are examined according to lineage such as endothelium, cells of mesenchymal origin (e.g. Nestin+ cells and osteoblasts [OBs]), and others (e.g. megakaryocytes [MKs] and non-myelinating Schwann cells). Physical niche components such as the extra cellular matrix proteins are also discussed, along with the chemical milieu. Finally, intrinsic regulators of HSC function are considered. This chapter is not intended to be an exhaustive account of HSC niche biology; however, relevant mechanistic information is included. Also, where appropriate, we draw special attention to niche cells and components with effects on HSC quiescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6C3:

ENPEP glutamyl aminopeptidoase (aminopeptidase A)

Ang1:

Angiopoietin 1

Arf :

ADP-ribosylation factor

CAR:

CXCL 12 abundant reticular cells

CD:

Cluster of differentiation

CDI:

Cyclin dependent kinase inhibitor

CFU-F:

Colony forming unit fibroblastic

c-Kit:

Identify hematopoietic progenitors, Kit oncogene

CXCL12:

Chemokine (C-X-C motif) ligand 12

CXCR4:

C-X-C motif chemokine receptor 4

DTR:

Diphtheria toxin receptor

ECM:

Extracellular matrix

FACS:

Fluorescent-activated cell sorting

FLT3:

Fms-like tyrosine kinase 3

Fmi:

Flamingo

Fz8:

Frizzled 8

G-CSF(R):

Granulocyte colony-stimulating factor (receptor)

GFAP:

Glial fibrillary acid protein

GFP:

Green Fluorescent Protein

GRP78:

Glucose-regulated protein 78

HIF-1:

Hypoxia-inducible factor

HPC(s):

Hematopoietic progenitor cell(s)

HSC(s):

Hematopoietic stem cell(s)

HSPC(s):

Hematopoietic stem and progenitor cell(s)

ICAM:

Intercellular adhesion molecule

IL:

Interleukin

INFγ:

Interferon gamma

KitL:

Kit ligand also stem cell factor or SCF

Lep-R:

Leptin receptor (CD295)

Lin :

Lineage negative

LSK:

LinScal+ c-Kit+

LTBP:

Latent TGFB1 binding protein

LT-HSCs:

Long-term repopulating HSCs

MCAM:

Melanoma cell adhesion molecule

MK(s):

Megakaryocyte(s)

MSC(s):

Mesenchymal stem/stromal cell(s)

MSPC(s):

Mesenchymal stem/progenitor cell(s)

mTOR:

Mammalian target of rapamycin

Nestin:

Intermediate filament protein

NFAT:

Nuclear factor of activated T-cells

OM:

Osteomacs

p57Kip2:

Cyclin-dependent kinase inhibitor 1C

PDGFR:

Platelet derived growth factor receptor

PF4:

Platelet factor 4 (also CXCL4)

PIMO:

Pimonidazole, hypoxia marker

PTH:

Parathyroid hormone

RNA-seq:

Ribonucleic acid sequencing

ROS:

Reactive oxygen species

Runx2:

Runt-related transcription factor 2

Satb1:

Transcription factor/chromatin remodeling protein

Sca1:

Stem cell antigen-1

SCF:

Stem cell factor

SDF1:

CXCL12

TCA:

Tricarboxylic acid cycle

TGFB1:

Transforming growth factor beta 1

TPO:

Thrombopoietin

VCAM1:

Vascular cell adhesion molecule 1

References

  1. Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014;35(1):32–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol. 2003;170(9):4649–55.

    Article  CAS  PubMed  Google Scholar 

  3. Arranz L, Urbano-Ispizúa Á, Méndez-Ferrer S. Mitochondria underlie different metabolism of hematopoietic stem and progenitor cells. 2013;993–5.

    Google Scholar 

  4. Balduino A, Mello-Coelho V, Wang Z, Taichman RS, Krebsbach PH, Weeraratna AT, et al. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis. Exp Cell Res. 2012;318(19):2427–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bethel MSE, Kacena MA. Hematopoietic cell regulation of osteoblast proliferation and differentiation. Curr Osteoporos Rep. 2011;9(2):96–102.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T. PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood. 2004;104(8):2299–306.

    Article  CAS  PubMed  Google Scholar 

  7. Bromberg O, Frisch BJ, Weber JM, Porter RL, Civitelli R, Calvi LM. Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood. 2012;120(2):303–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Broxmeyer HE, Pelus LM, Kim CH, Hangoc G, Cooper S, Hromas R. Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C. Exp Hematol. 2006;34(8):1069–77.

    Article  CAS  PubMed  Google Scholar 

  9. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Calvi LM AG, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.

    Google Scholar 

  11. Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chevre R, A-González N, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell. 2013;153(5):1025–35.

    Google Scholar 

  12. Chan CK, Lindau P, Jiang W, Chen JY, Zhang LF, Chen CC, et al. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci USA. 2013;110(31):12643–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181.

    Google Scholar 

  14. Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development. 2013;140(2):255–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cheng YH, Chitteti BR, Streicher DA, Morgan JA, rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA. Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res. 2011;26(5):1111–21.

    Google Scholar 

  16. Cheng YH, Chitteti BR, Streicher DA, Morgan JA, Rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA. Impact of osteoblast maturational status on their ability to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res. 2011;26(5):1111–21.

    Google Scholar 

  17. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.

    Article  CAS  PubMed  Google Scholar 

  18. Chitteti BR, Cheng YH, Kacena MA, Srour EF. Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone. 2013;54(1):58–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chitteti BRCY, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, Kacena MA, Srour EF. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood. 2010;115(16):3239–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chitteti BR, Cheng YV, Streicher DA, Rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA. Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem. 2010;111(2):284–294.

    Google Scholar 

  21. Chitteti BRKM, Cheng Y, Zhang H, Poteat BA, Broxmeyer HE, Pelus LM, Hanenberg H, Zollman A, Kamocka MM, Carlesso N, Cardoso AA, Kacena MA, Srour EF. CD 166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood. 2014;124(4):519–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71.

    Google Scholar 

  23. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate menatopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011;208:251–60.

    Google Scholar 

  24. Ciovacco WA, Cheng YH, Horowitz MC, Kacena MA. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem. 2010;109(4):774–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood. 2013;121(15):2891–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Coskun S, Chao H, Vasavada H, Heydari K, Gonzales N, Zhou X, et al. Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep. 2014;9(2):581–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642–54.

    Article  CAS  PubMed  Google Scholar 

  28. Craddock CF, Nakamoto B, Andrews RG, Priestley GV, Papayannopoulou T. Antibodies to VLA4 Integrin Mobilize Long-Term Repopulating Cells and Augment Cytokine-Induced Mobilization in Primates and Mice 1997; Dec 15 4779–88 p.

    Google Scholar 

  29. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Dominici MRV, Bussolari R, Chen X, Hofmann TJ, Spano C, Bernabei D, Veronesi E, Bertoni F, Paolucci P, Conte P, Horwitz EM. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood. 2009;114(11):2333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell. 2014;15(5):546–58.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher CL, Fisher AG. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev. 2011;21(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  34. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol. 2013;31:285–316.

    Article  PubMed  Google Scholar 

  35. Gainsford T, Alexander WS. A role for leptin in hemopoieses? Mol Biotechnol. 1999;11(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  36. Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A, et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA. 1996;93(25):14564–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hayashi N, Yamamoto K, Ohishi M, Tatara Y, Takeya Y, Shiota A, et al. The counterregulating role of ACE2 and ACE2-mediated angiotensin 1-7 signaling against angiotensin II stimulation in vascular cells. Hypertens Res Official J Jpn Soc Hypertens. 2010;33(11):1182–5.

    Article  CAS  Google Scholar 

  39. Isern J, Martín-Antonio B, Ghazanfari R, Martín AM, López JA, del Toro R, et al. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 2013;3(5):1714–24.

    Article  CAS  PubMed  Google Scholar 

  40. Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Katayama Y. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2005;124:407–21.

    Google Scholar 

  42. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi MSE. Regulation of murine hematopoietic stem cell quiescence by Dmtf1. Blood. 2011;118:6562–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43.

    Article  CAS  PubMed  Google Scholar 

  45. Leon-Rico D, Aldea M, Sanchez R, Segovia JC, Weiss LA, Hidalgo A, et al. Reduced expression of CD18 leads to the in vivo expansion of hematopoietic stem cells in mouse bone marrow. Stem Cells. 2014;6(10).

    Google Scholar 

  46. Lin KK, Rossi L, Boles NC, Hall BE, George TC, Goodell MA. CD81 is essential for the re-entry of hematopoietic stem cells to quiescence following stress-induced proliferation via deactivation of the Akt pathway. PLoS Biol. 2011;9(9):e1001148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. 2000 May 15: 3025–31 p.

    Google Scholar 

  48. Machlus KR, Italiano JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Masuo K, Straznicky NE, Lambert GW, Katsuya T, Sugimoto K, Rakugi H, et al. Leptin-receptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic nerve activation in a Caucasian male population. Hypertens Res Official J Jpn Soc Hypertens. 2008;31(6):1093–100.

    Article  CAS  Google Scholar 

  50. Mazzon C, Anselmo A, Cibella J, Soldani C, Destro A, Kim N, et al. The critical role of agrin in the hematopoietic stem cell niche. Blood. 2011;118(10):2733–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452.

    Google Scholar 

  53. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol. 2005;20(2):665–71.

    CAS  PubMed  Google Scholar 

  55. Miharada K, Karlsson G, Rehn M, Rörby E, Siva K, Cammenga J, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell. 2011;(4):330–44.

    Google Scholar 

  56. Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID, et al. Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev. 2008;22(12):1677–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA. 1994;91(6):2305–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205(4):777–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Oburoglu L, Tardito S, Fritz V, de Barros Stéphanie C, Merida P, Craveiro M, et al. Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell. 2014;15(2):169–84.

    Article  CAS  PubMed  Google Scholar 

  63. Olson TSCA, Otsuru S, Hofmann TJ, Williams R, Paolucci P, Dominici M, Horwitz EM. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121(26):5238–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell. 2014;29(3):330–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Park D, Sykes DB, Scadden DT. The hematopoietic stem cell niche. Frontiers in bioscience (Landmark edition). 2012;17:30–9.

    Article  PubMed Central  CAS  Google Scholar 

  66. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY). 1999;283(5403):845–8.

    Google Scholar 

  67. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7):1351–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Prendergast ÁM, Essers MAG. Hematopoietic stem cells, infection, and the niche. Ann N Y Acad Sci. 2014;1310(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  69. Rodriguez S, Wang L, Mumaw C, Srour EF, Lo Celso C, Nakayama K, et al. The SKP2 E3 ligase regulates basal homeostasis and stress-induced regeneration of HSCs. Blood. 2011;117(24):6509–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Yamazaki S. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 2011;147, 1146–1158 p.

    Google Scholar 

  71. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.

    Article  CAS  PubMed  Google Scholar 

  72. Schepers K, Hsiao EC, Garg T, Scott MJ, Passegué E. Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. 2012 Oct 25:3425–35 p.

    Google Scholar 

  73. Schofield R, The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    Google Scholar 

  74. Sharma Y, Flurkey K, Astle CM, Harrison DE. Mice severely deficient in growth hormone have normal hematopoiesis. Exp Hematol. 2005;33(7):776–83.

    Article  CAS  PubMed  Google Scholar 

  75. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Stopp S, Bornhauser M, Ugarte F, Wobus M, Kuhn M, Brenner S, et al. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells. Haematologica. 2013;98(4):505–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sugimura R, He Xi C, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150(2):351–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  79. Sugiyama T, Nagasawa T. Bone marrow niches for hematopoietic stem cells and immune cells. Inflamm Allergy Drug Targets. 2012;11(3):201–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514(7522):322–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82.

    Article  CAS  PubMed  Google Scholar 

  82. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  83. Takubo K, Nagamatsu G, Kobayashi Chiharu I, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  84. Tamplin OJ, Durand EM, Carr LA, Childs SJ, Hagedorn EJ, Li P, et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell. 2015;160(1–2):241–52.

    Article  CAS  PubMed  Google Scholar 

  85. Tiedt R, Schomber T, Hao-Shen H, Skoda RC. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood. 2007;109(4):1503–6.

    Article  CAS  PubMed  Google Scholar 

  86. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood. 2011;117(2):429–39.

    Article  CAS  PubMed  Google Scholar 

  87. Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, et al. Integrin-αvβ3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood. 2012;119(1):83–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood. 2004;103(9):3258–64.

    Article  CAS  PubMed  Google Scholar 

  89. Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L, et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol. 2013;14(5):437–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Winkler IG, Barbier V, Wadley R, Zannettino ACW, Williams S, Lévesque J-P. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  91. Winkler IGSN, Pettit AR, Nowlan BV. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HsCx. Blood. 2011;116:4815–28.

    Article  Google Scholar 

  92. Yamada T, Park CS, Lacorazza HD. Genetic control of quiescence in hematopoietic stem cells. Cell cycle (Georgetown, Tex). 2013;12(15):2376–83.

    Google Scholar 

  93. Yamazaki SNH. Bone marrow Schwann cells induce hematopoietic stem cell hibernation. Int J Hematol. 2014;99:695–8.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang JNC, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014; advance online publication.

    Google Scholar 

  97. Zhou Bo O, Yue R, Murphy Malea M, Peyer JG, Morrison Sean J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIAMS AR060332 (MAK), NIA AG046246 (MAK), the Indiana Center for Excellence in Molecular Hematology (NIDDK P30 DK090948), and a postdoctoral NIH T32 Training Grant in Hematopoiesis, T32 4689736 (PC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melissa A. Kacena or Edward F. Srour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Childress, P.J., Alvarez, M.B., Chitteti, B.R., Kacena, M.A., Srour, E.F. (2015). The Hematopoietic Stem Cell Niche: Cell-Cell Interactions and Quiescence. In: Turksen, K. (eds) Biology in Stem Cell Niche. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21702-4_1

Download citation

Publish with us

Policies and ethics