Skip to main content

Multi-scale Approaches to Dynamical Transmission of Protein Allostery

  • Conference paper
Physical Biology of Proteins and Peptides

Abstract

We review the idea that allosteric interactions can be transmitted not by structural switching but by the more subtle route of modulation of the amplitude of thermally-activated global dynamical modes in allosteric proteins. The effect is naturally addressed and explored through coarse-grained models of protein dynamics, but can be linked to atomistic models of substrate binding at the fine scale, and to themodynamic free energies at the macroscopic scale. A remarkable specificity at the residue level emerges: allosteric proteins possess a set of ‘control sites’ whose modification by single-point mutation may alter allosteric free-energies non-perturbatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339. doi:10.1038/nature13001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions—a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  3. Koshland DE Jr, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  CAS  PubMed  Google Scholar 

  4. Cooper A, Dryden DT (1984) Allostery without conformational change. A plausible model. Eur Biophys J 11:103–109

    Article  CAS  PubMed  Google Scholar 

  5. Hawkins RJ, McLeish TC (2004) Coarse-grained model of entropic allostery. Phys Rev Lett 93:098104

    Article  PubMed  Google Scholar 

  6. Hawkins RJ, McLeish TCB (2006) Coupling of global and local vibrational modes in dynamic allostery of proteins. Biophys J 91:2055–2062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hawkins RJ, McLeish TCB (2006) Dynamic allostery of protein alpha helical coiled-coils. J R Soc Interface 3:125–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tzeng SR, Kalodimos CG (2009) Dynamic activation of an allosteric regulatory protein. Nature 462:368–372. doi:10.1038/nature08560

    Article  CAS  PubMed  Google Scholar 

  9. Tzeng SR, Kalodimos CG (2012) Protein activity regulation by conformational entropy. Nature 488:236–240. doi:10.1038/nature11271

    Article  CAS  PubMed  Google Scholar 

  10. Rodgers TL et al (2013) Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol 11, e1001651. doi:10.1371/journal.pbio.1001651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Manley G, Rivalta I, Loria JP (2013) Solution NMR and computational methods for understanding protein allostery. J Phys Chem B 117:3063–3073. doi:10.1021/jp312576v

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wand AJ (2013) The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr Opin Struct Biol 23:75–81. doi:10.1016/j.sbi.2012.11.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bahar I, Atilgan AR, Demirel MC, Erman B (1998) Vibrational dynamics of folded proteins: significance of slow and fast motions in relation to function and stability. Phys Rev Lett 80:2733–2736

    Article  CAS  Google Scholar 

  14. McLeish TC, Rodgers TL, Wilson MR (2013) Allostery without conformation change: modelling protein dynamics at multiple scales. Phys Biol 10:056004. doi:10.1088/1478-3975/10/5/056004

    Article  CAS  PubMed  Google Scholar 

  15. Hilser VJ, Wrabl JO, Motlagh HN (2012) Structural and energetic basis of allostery. Annu Rev Biophys 41:585–609. doi:10.1146/annurev-biophys-050511-102319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu T, Whitten ST, Hilser VJ (2007) Functional residues serve a dominant role in mediating the cooperativity of the protein ensemble. Proc Natl Acad Sci U S A 104:4347–4352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Motlagh HN, Hilser VJ (2012) Agonism/antagonism switching in allosteric ensembles. Proc Natl Acad Sci U S A 109:4134–4139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Reynolds KA, McLaughlin RN, Ranganathan R (2011) Hot spots for allosteric regulation on protein surfaces. Cell 147:1564–1575. doi:10.1016/j.cell.2011.10.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhuravleva A, Clerico EM, Gierasch LM (2012) An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 Molecular chaperones. Cell 151:1296–1307. doi:10.1016/j.cell.2012.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhuravleva A, Gierasch LM (2011) Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl Acad Sci U S A 108:6987–6992. doi:10.1073/pnas.1014448108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80:6571–6575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A 80:3696–3700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908

    Article  CAS  PubMed  Google Scholar 

  24. Delarue M, Sanejouand YH (2002) Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. J Mol Biol 320:1011–1024

    Article  CAS  PubMed  Google Scholar 

  25. Valadie H, Lacapcre JJ, Sanejouand YH, Etchebest C (2003) Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J Mol Biol 332:657–674

    Article  CAS  PubMed  Google Scholar 

  26. Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13:831–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624. doi:10.1038/nrmicro1932

    Article  PubMed  Google Scholar 

  28. Rodgers TL, Burnell D, Townsend PD, Pohl E, Cann MJ, Wilson MR, McLeish TC (2013) ΔΔPT: a comprehensive toolbox for the analysis of protein motion. BMC Bioinf 14:183. doi:10.1186/1471-2105-14-183

    Article  CAS  Google Scholar 

  29. Brown A (2009) Analysis of cooperativity by isothermal titration calorimetry. Int J Mol Sci 10:3457–3477. doi:10.3390/ijms10083457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Durand P, Trinquier G, Sanejouand YH (1994) New approach for determining low-frequency normal-modes in macromolecules. Biopolymers 34:759–771

    Article  CAS  Google Scholar 

  31. Toncrova H, McLeish TCB (2010) Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP. Biophys J 98:2317–2326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. B. McLeish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Townsend, P.D., Rodgers, T.L., Pohl, E., Wilson, M.R., Cann, M.J., McLeish, T.C.B. (2015). Multi-scale Approaches to Dynamical Transmission of Protein Allostery. In: Olivares-Quiroz, L., Guzmán-López, O., Jardón-Valadez, H. (eds) Physical Biology of Proteins and Peptides. Springer, Cham. https://doi.org/10.1007/978-3-319-21687-4_8

Download citation

Publish with us

Policies and ethics