Skip to main content

Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

In this contribution, some issues related to the interpretation, simulation and modelling of solvent effects on the absorption and emission spectra of organic dyes are presented and discussed. First, a brief analysis of the physical basis of solvent effects on the electronic transitions is reported, in order to introduce the most important phenomena and quantities tuning the so-called solvatochromic shifts. This is followed by a general discussion of the most common models employed for the interpretation, simulation and prediction of such effects. A general and effective multilayer scheme is analyzed in some detail, which has been developed in the past years and is known to provide—in most cases—quantitative predictions of the spectral features of solvated molecules. Afterwards, starting from this general model, some approximations are introduced, leading to simplified and cost effective analytical schemes. In order to sketch a more complete perspective of the models still used by spectroscopists, phenomenological methods are critically discussed. Finally, broadening of spectral lines by both symmetric (solvent relaxation) and possibly asymmetric (vibronic) contributions is shortly analysed. In all cases, the theoretical bases of the methods, as well as practical applications and test cases are given, in order to clarify the most interesting aspects of all the discussed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AO:

Atomic Orbital

CC:

Coupled Cluster

Cou:

Coulomb

C-PCM:

Conductor-like Polarizable Continuum Model

DFT:

Density Functional Theory

DFTB:

Density Functional Tight Binding

D-PCM:

Dielectric-like Polarizable Continuum Model

EE:

Electrostatic Embedding

Eq:

Equilibrium solvation regime

FC:

Frank-Condon

FX:

Fixed Charges

FQ:

Fluctuating Charge

FWHM:

Full Width at Half Maximum

HOMO:

Highest Occupied Molecular Orbital

IEF-PCM:

Integral Equation Formalism Polarizable Continuum Model

LUMO:

Lowest Unoccupied Molecular Orbital

MD:

Molecular Dynamics

ME:

Mechanical Embedding

MF:

Mean Field

MM:

Molecular Mechanics

MO:

Molecular Orbital

MRCI:

Multi Reference Configuration Interaction

NPBC:

Non-Periodic Boundary Conditions

NEQ:

Non equilibrium solvation regime

OO:

Occupied-occupied orbitals

OPA:

One Photon Absorption

OPE:

One Photon Emission

OV:

Occupied-virtual orbitals

PBC:

Periodic Boundary Conditions

PCM:

Polarizable Continuum Model

PE:

Polarizable Embedding

PES:

Potential Energy Surface

SCF:

Self-Consistent Field

QM:

Quantum Mechanics

QM/MM:

Quantum Mechanics/Molecular Mechanics

SS:

State Specific

TD-DFT:

Time Dependent Density Functional Theory

UV-Vis:

Ultra Violet—Visible

vdW:

Van der Waals

VV:

Virtual-virtual orbitals

References and Notes

  1. Pandey N, Gahlaut R, Arora P, Joshi NK, Joshi HC, Pant S (2014) J Mol Struct 1061:175

    Article  CAS  Google Scholar 

  2. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  3. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  CAS  Google Scholar 

  4. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669

    Article  CAS  Google Scholar 

  5. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  6. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  7. Neese F, Schwabe T, Grimme S (2007) J Chem Phys 126:124115

    Article  CAS  Google Scholar 

  8. Kozuch S, Gruzman D, Martin J (2010) J Phys Chem C 114:20801

    Article  CAS  Google Scholar 

  9. Biczysko M, Panek P, Scalmani G, Bloino J, Barone V (2010) J Chem Theory Comput 6:2115

    Article  CAS  Google Scholar 

  10. Cossi M, Barone V, Cammi R, Tomasi J (1996) J Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  11. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210

    Article  CAS  Google Scholar 

  12. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  13. Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  14. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  15. Cances E, Mennucci B (1998) J Math Chem 23:309

    Article  CAS  Google Scholar 

  16. Mennucci B, Cammi R, Tomasi J (1998) J Chem Phys 109:2798

    Article  CAS  Google Scholar 

  17. Cappelli C, Corni S, Cammi R, Mennucci B, Tomasi J (2000) J Chem Phys 113:11270

    Article  CAS  Google Scholar 

  18. Cossi M, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  19. Cossi M, Scalmani G, Rega N, Barone V (2002) J Comp Chem 117:43

    CAS  Google Scholar 

  20. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669

    Article  CAS  Google Scholar 

  21. Brancato G, Di Nola A, Barone V, Amadei A (2005) J Chem Phys 122:154109

    Article  CAS  Google Scholar 

  22. Rega N, Brancato G, Barone V (2006) Chem Phys Lett 422:367

    Article  CAS  Google Scholar 

  23. Brancato G, Rega N, Barone V (2006) J Chem Phys 124:214505

    Article  CAS  Google Scholar 

  24. Brancato G, Rega N, Barone V (2008) J Chem Phys 128:144501

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. Cappelli C, Lipparini F, Bloino J, Barone V (2011) J Chem Phys 135:104505

    Article  CAS  Google Scholar 

  27. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  CAS  Google Scholar 

  28. Ohno K (1964) Theor Chem Accounts 2:219

    Article  CAS  Google Scholar 

  29. Mortier WJ, van Genechten K, Gasteiger J (1985) J Am Chem Soc 107:829

    Article  CAS  Google Scholar 

  30. Rappe A, Goddard W (1991) J Phys Chem 95:3358

    Article  CAS  Google Scholar 

  31. Rick SW, Stuart SJ, Berne BJ (1994) J Chem Phys 101:6141

    Article  CAS  Google Scholar 

  32. Lipparini F, Barone V (2011) J Chem Theory Comput 7:3711

    Article  CAS  Google Scholar 

  33. Lipparini F, Cappelli C, Barone V (2012) J Chem Theory Comput 8:4153

    Article  CAS  Google Scholar 

  34. Lipparini F, Cappelli C, Scalmani G, Mitri ND, Barone V (2012) J Chem Theory Comput 8:4270

    Article  CAS  Google Scholar 

  35. Lipparini F, Cappelli C, Barone V (2013) J Chem Phys 138:234108

    Article  CAS  Google Scholar 

  36. Born M (1920) Z. Phys. 1:45

    Article  CAS  Google Scholar 

  37. Bell RP (1931) Trans Faraday Soc 27:797

    Article  CAS  Google Scholar 

  38. Kirkwood JG (1934) J Chem Phys 2:351

    Article  CAS  Google Scholar 

  39. Kirkwood JG, Westheimer FH (1936) J Chem Phys 6:506

    Article  Google Scholar 

  40. Onsager L (1936) J Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  41. Westheimer FH, Kirkwood JG (1938) J Chem Phys 6:513

    Article  CAS  Google Scholar 

  42. Kirkwood JG (1939) J Chem Phys 7:911

    Article  CAS  Google Scholar 

  43. Böttcher F (1942) Physica (Utrecht) 9:937

    Article  Google Scholar 

  44. Böttcher F (1942) Physica (Utrecht) 9:945

    Article  Google Scholar 

  45. Scholte ThG (1949) Physica 15:437

    Article  CAS  Google Scholar 

  46. Bonnor WB (1951) Trans Faraday Soc 47:1143

    Article  CAS  Google Scholar 

  47. Böttcher F (1952, 1973) Theory of electric polarization. Elsevier, New York

    Google Scholar 

  48. Buckingham AD (1953) Trans Faraday Soc 49:881

    Article  CAS  Google Scholar 

  49. Lippert E (1955) Z Naturforsch 10A:541

    CAS  Google Scholar 

  50. Mataga N, Kaifu Y, Koizumi M (1955) Bull Chem Soc Jpn 28:690

    Article  CAS  Google Scholar 

  51. Mataga N, Kaifu Y, Koizumi M (1956) Bull Chem Soc Jpn 29:115

    Article  CAS  Google Scholar 

  52. McRae EG (1957) J Phys Chem 61:562

    Article  CAS  Google Scholar 

  53. Lippert E (1957) Ber Bunsenges Phys Chem 61:962

    CAS  Google Scholar 

  54. McRae EG (1958) Spectrochim. Acta A 12:192

    Article  CAS  Google Scholar 

  55. Ito M, Inozuka K, Imanishi S (1960) J Am Chem Soc 82:1317

    Article  CAS  Google Scholar 

  56. Robertson W, King A, Weigang O (1961) J Chem Phys 35:464

    Article  CAS  Google Scholar 

  57. Czekalla J, Meyer KO (1961) Z. Phys. Chem. (Frankfurt am Main) 27:185

    Article  CAS  Google Scholar 

  58. Lippert E, Lüder W, Moll F, Nagele W, Boos H, Prigge H, Seibold-Blankenstein I (1961) Angew Chem 73:695

    Article  CAS  Google Scholar 

  59. Kubota T, Yarnakawa M (1962) Bull Chem Soc Jpn 35:555

    Article  Google Scholar 

  60. Bilot L, Kawski A (1962) Z Naturforsch A 17A:621

    CAS  Google Scholar 

  61. Lippert E, Lüder W, Boos H (1962) Fluoreszenzspektrum und Franck–Condon–Prinzip in Lösungen Aromatischer Verbindgungen. In: Magnini A (ed) Advances molecular spectroscopy, vol I. Pergamon Press, London, p 443

    Google Scholar 

  62. Bakhshiev NG (1962) Opt Spektrosk 13:192

    CAS  Google Scholar 

  63. Bakhshiev NG (1964) Opt Spektrosk 16:821

    CAS  Google Scholar 

  64. Bakhshiev NG (1965) Opt Spektrosk 19:196

    Google Scholar 

  65. Bakhshiev NG, Saidov GV (1966) Dokl Akad Nauk SSSR 168:120

    CAS  Google Scholar 

  66. Beens H, Knibbe N, Weller A (1967) J Chem Phys 47:1183

    Article  CAS  Google Scholar 

  67. Bakhshiev NG, Saidov GV (1967) Dokl Akad Nauk SSSR 175:1090

    Google Scholar 

  68. Abraham RJ, Cooper MA (1967) J Chem Soc B 202

    Google Scholar 

  69. Beens H, Weller A (1968) Acta Phys Pol 34:593

    CAS  Google Scholar 

  70. Weller A (1968) Pure Appl Chem 16:115

    Article  CAS  Google Scholar 

  71. Bakshiev NG, Knyazhanskii MI, Osipov OA, Minkin VI, Saidov GV (1969) Usp Khim 38:1644

    Google Scholar 

  72. Chamma A, Viallet P (1970) CR Acad Sci C 270:1901

    CAS  Google Scholar 

  73. Abribat G, Viallet P (1970) CR Acad Sci C 271:1029

    CAS  Google Scholar 

  74. Figueras J (1971) J Am Chem Soc 93:3255

    Article  CAS  Google Scholar 

  75. Bartoszewicz B, Kawski A (1971) Bull Acad Pol Sci Ser Sci Math Astronom Phys 19:249

    Google Scholar 

  76. Bakhshiev NG (1972) Spektroskopiya Mezhdumolekulyarnykh Vzaimodeistvii. Nauka, Leningrad, p 165

    Google Scholar 

  77. Varma CAGO, Groenen EJJ (1972) Rec Trav Chim Pays-Bas 91:296

    CAS  Google Scholar 

  78. Okada T, Fujita T, Kubota M, Masaki S, Mataga N, Ide R, Sakata Y, Misumi S (1972) Chem Phys Lett 14:563

    Article  CAS  Google Scholar 

  79. Thiebaut JM, Rivail JL, Barriol J (1972) J Chem Soc, Faraday Trans 2(68):1253

    Article  Google Scholar 

  80. Amos AT, Burrows BL (1973) Adv Quantum Chem 7:303

    Google Scholar 

  81. Dekkers AWJD, Verhoeven JW, Speckarnp WN (1973) Tetrahedron 29:1691

    Article  CAS  Google Scholar 

  82. Marty A, Viallet P (1973) J Photochem 1:443

    Article  CAS  Google Scholar 

  83. Sun M (1974) Thesis. University, Lubbock, Texas Tech

    Google Scholar 

  84. Karelov AA, Chmutova GA, Vtyurina NN, Kataev EG (1975) Zh Fiz Khim 49:1901

    CAS  Google Scholar 

  85. Grasso D, Bellio E (1975) Chem Phys Lett 30:421

    Article  CAS  Google Scholar 

  86. Rao KG, Bhujle VV, Rao CNR (1975) Spectrochim Acta A 31:885

    Article  Google Scholar 

  87. Beveridge DL, Schnuelle GW (1975) J Phys Chem 79:2562

    Article  CAS  Google Scholar 

  88. Sahini VE, Telea L (1976) Rev Roum Chim 21:321

    CAS  Google Scholar 

  89. Sahini VE, Weinberg J, Vasilescu M (1976) Rev Roum Chim 21:1121

    CAS  Google Scholar 

  90. Koutek B, Pisova M, Soucek M, Exner O (1976) Coll Czech Chem Commun 41:1676

    Article  CAS  Google Scholar 

  91. Grasso D, Fasone S, Gandolfo C, Buemi G (1976) Tetrahedron 32:2105

    Article  CAS  Google Scholar 

  92. Yamaguchi H, Ikeda T, Mamatsuka H (1976) Bull Chem Soc Jpn 49:1762

    Article  CAS  Google Scholar 

  93. Deurnie M, Viallet P, Jacquignon P, Croisy-Delcey MC (1976) CR Acad Sci C 283:57

    Google Scholar 

  94. Strahle H, Seitz W, Glisten H (1976) Ber Bunsenges Phys Chem 80:288

    Article  Google Scholar 

  95. Harrison SW, Nolte HJ, Beveridge DL (1976) J Phys Chem 80:2580

    Article  CAS  Google Scholar 

  96. Ehrenson S (1976) J Am Chem Soc 98:7510

    Article  CAS  Google Scholar 

  97. Perram JW, Stiles PJ (1976) Proc R Soc Lond A 349:125

    Article  CAS  Google Scholar 

  98. Masuhara H, Mataga N, Yoshida M, Taternitsu H, Sakata Y, Misumi S (1977) J Phys Chem 81:879

    Article  CAS  Google Scholar 

  99. Revail JL, Terryn B (1982) J Chim Phys 79:2

    Google Scholar 

  100. Rinaldi D (1982) Comp Chem 6:155

    Article  CAS  Google Scholar 

  101. Ghoneim N, Suppan P (1995) Spectrochim Acta A 51A:1043

    Article  CAS  Google Scholar 

  102. Kosower EM (1958) J Am Chem Soc 80:3253

    Article  CAS  Google Scholar 

  103. Kosower EM (1958) J Am Chem Soc 80:3261

    Article  CAS  Google Scholar 

  104. Kosower EM (1958) J Am Chem Soc 80:3267

    Article  CAS  Google Scholar 

  105. Brownstein S (1960) Can J Chem 38:1590

    Article  CAS  Google Scholar 

  106. Kosower EM, Skorcz JA, Schwarz WM, Patton JW (1960) J Am Chem Soc 82:2188

    Article  CAS  Google Scholar 

  107. Allerhand A, Schleyer P (1963) J Am Chem Soc 85:371

    Article  CAS  Google Scholar 

  108. Dimroth K, Reichardt C, Siepmann T, Bohlmann F (1963) Liebigs Ann Chem 661:1

    Article  CAS  Google Scholar 

  109. Brooker LGS, Craig AC, Heseltine DW, Jenkins PW, Lincoln LL (1965) J Am Chem Soc 87:2443

    Article  CAS  Google Scholar 

  110. Kosower EM (1968) An introduction to physical organic chemistry. Wiley, New York

    Google Scholar 

  111. Dubois JE, Bienvenûe A (1968) J Chim Phys 65:1259

    CAS  Google Scholar 

  112. Koppel IA, Palm VA (1971) Reakts. Sposob. Org. Soedin 8:291; Engl. Transl. In: Chapman NB, Shorter J (eds) Advances in linear free–energy relationships. Plenum Press, London, p 203

    Google Scholar 

  113. Fowler FW, Katritzky AR, Rutherford RD (1971) J Chem Soc B 460

    Google Scholar 

  114. Koppel IA, Palm VA (1972) The Influence of the solvent on organic reactivity. In: Chapman NB, Shorter J (eds) Advances in linear free energy relationships, Chapter 5. Plenum Press, London

    Google Scholar 

  115. Walter DJ (1974) Prakt Chem 316:604

    Article  Google Scholar 

  116. Krygowsky TM, Fawcett WR (1975) J Am Chem Soc 97:2143

    Article  Google Scholar 

  117. Dougherty RC (1975) Tetrahedron Lett 8:385

    Article  Google Scholar 

  118. Knauer BR, Napier JJ (1976) J Am Chem Soc 98:4395

    Article  CAS  Google Scholar 

  119. Gutmann V (1977) Chemtech 7:255; and references therein

    Google Scholar 

  120. Kamlet MJ, Abboud JL, Taft RW (1977) J Am Chem Soc 99:6027

    Article  CAS  Google Scholar 

  121. Jones ME, Taft RW, Kamlet MJ (1977) J Am Chem Soc 99:8452

    Article  CAS  Google Scholar 

  122. Reichardt C, Harbusch-Görnert E (1983) Liebigs Ann Chem 1983:721

    Article  Google Scholar 

  123. Dong DC, Winnik MA (1984) Can J Chem 62:2560

    Article  CAS  Google Scholar 

  124. Swain CG, Powell AL, Alunni SG (1984) J Am Chem Soc 105:502

    Article  Google Scholar 

  125. Buncel E, Rajagopal S (1989) J Org Chem 54:798

    Article  CAS  Google Scholar 

  126. Drago RS (1992) J Chem Soc, Perkin Trans 2:1827

    Article  Google Scholar 

  127. Abraham MH (1993) J Phys Org Chem 6:660

    Article  CAS  Google Scholar 

  128. Abraham MH (1993) Pure Appl Chem 65:2503

    Article  CAS  Google Scholar 

  129. Reichardt C (1994) Chem Rev 94:2319

    Article  CAS  Google Scholar 

  130. Catalán J, López V, Pérez P, Martín-Villamil R, Rodríguez JG (1995) Liebigs Ann 1995:241

    Article  Google Scholar 

  131. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279

    Article  CAS  Google Scholar 

  132. Catalán J, Díaz C, López V, Pérez P, Paz JLG, Rodríguez JG (1996) Liebigs Ann 1996:1785

    Article  Google Scholar 

  133. Catalán J, Díaz C (1997) Liebigs Ann 1997:1941

    Article  Google Scholar 

  134. Katritzky AR, Karelson M, Lobanov VS (1997) Pure Appl Chem 245

    Google Scholar 

  135. Katritzky AR, Tamm T, Wang Y, Sild S, Karelson M (1999) J Chem Inf Comput Sci 39:684

    Article  CAS  Google Scholar 

  136. Katritzky AR, Tamm T, Wang Y, Sild S, Karelson M (1999) J Chem Inf Comput Sci 39:692

    Article  CAS  Google Scholar 

  137. Catalán J (2001) Solvent effects based on pure solvent scales, in Handbook of solvents (ed Wypych G), Section 10.3. ChemTec Publishing, Toronto

    Google Scholar 

  138. Katritzky AR, Fara DC, Hong Y, Tamm K, Tamm T, Karelson M (2004) Chem Rev 104:175

    Article  CAS  Google Scholar 

  139. Katritzky AR, Fara DC, Kuanar M, Hur E, Karelson M (2005) J Phys Chem A 109:10323

    Article  CAS  Google Scholar 

  140. Reichardt C, Welton T (2010) Solvents and solvent effects in organic chemistry. Wiley–VCH Verlag

    Google Scholar 

  141. Laurence C, Legros J, Chantzis A, Planchat A, Jacquemin D (2015) J Phys Chem B 119:3174

    Article  CAS  Google Scholar 

  142. Barone V (ed) (2011) Computational strategies for spectroscopy: from small molecules to nanosystems. Wiley, Chichester

    Google Scholar 

  143. Hentzsch A (1992) Ber Deutsch Chem Ges 55:953

    Article  Google Scholar 

  144. Vreven T, Byun KS, Komaromi I, Dapprich JAM Jr, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815

    Article  CAS  Google Scholar 

  145. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  146. Rivail JL, Rinaldi D (1976) Chem Phys 18:233

    Article  CAS  Google Scholar 

  147. Rinaldi D, Rivail JL (1973) Theor Chim Acta 32:57

    Article  CAS  Google Scholar 

  148. Rinaldi D, Ruiz-Lopez MF, Rivail JL (1983) J Chem Phys 78:834

    Article  CAS  Google Scholar 

  149. Dillet V, Rinaldi D, Rivail JL (1994) J Phys Chem 98:5034

    Google Scholar 

  150. Ruiz-Lopez MF (2008) The multipole moment expansion solvent continuum model: a brief review. In: S.Canuto (ed) Solvation effects on molecules and biomolecules: computational methods and applications, Springer Series: Challenges and advances in computational chemistry and physics, Chapter 2. Springer

    Google Scholar 

  151. Casida M (ed) (1997) Recent advances in density functional methods (Part I). Chapter 5: time-dependent density functional response theory for molecules.; World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  152. Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134

    Article  CAS  Google Scholar 

  153. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  154. Furche F (2001) J Chem Phys 114:5982

    Article  CAS  Google Scholar 

  155. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433

    Article  CAS  Google Scholar 

  156. Scalmani G, Frisch MJ, Mennucci B, Barone V (2006) J Chem Phys 124:094107

    Article  CAS  Google Scholar 

  157. Jørgensen P, Simons J (eds) (1981) Second quantization based methods in quantum chemistry. Academic, New York

    Google Scholar 

  158. Weiss H, Ahlrichs R, Haser M (1993) J Chem Phys 99:1262

    Article  CAS  Google Scholar 

  159. Davidson ER (1975) J Comput Phys 17:87

    Article  Google Scholar 

  160. Improta R, Barone V (2004) J Am Chem Soc 126:14320

    Article  CAS  Google Scholar 

  161. Barone V, Carnimeo I, Scalmani G (2013) J Chem Theory Comput 9:2052

    Article  CAS  Google Scholar 

  162. Elstner M, Porezag D, Jungnickel G, Elstner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  163. De Mitri N, Monti S, Prampolini G, Barone V (2013) J Chem Theory Comput 9:4507

    Article  CAS  Google Scholar 

  164. Cicogna F, Coiai S, Pinzino C, Ciardelli F, Passaglia E (2012) Reac Funct Polym 72:695

    Article  CAS  Google Scholar 

  165. Egidi F, Russo R, Carnimeo I, DÚrso A, Mancini G, Cappelli C (2015) J Phys Chem A doi:10.1021/jp510542x

  166. Cicogna F, Coiai S, Passaglia E, Tucci I, Ricci I, Ciardelli F, Batistini A (2011) J Polym Sci A 49:781

    Article  CAS  Google Scholar 

  167. Monti S, Cicogna F, Passaglia E, Prampolini G, Barone V (2011) Phys Chem Chem Phys 13:21471

    Article  CAS  Google Scholar 

  168. De Mitri N, Prampolini G, Monti S, Barone V (2014) Phys Chem Chem Phys 16:16573

    Article  Google Scholar 

  169. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  170. Rappé AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  171. Benassi E, Egidi F, Barone V (2015) J Phys Chem B 119:3155

    Article  CAS  Google Scholar 

  172. Suppan P (1983) Chem Phys Lett 94:272

    Article  CAS  Google Scholar 

  173. Mossotti OF (1850) Memorie di matematica e fisica in Modena 24 II:49

    Google Scholar 

  174. Clausius R (1879) Die mechanische U’grmetheorie 2:62

    Google Scholar 

  175. Karelson MM, Zerner MC (1992) J Phys Chem 96:6949

    Article  CAS  Google Scholar 

  176. Létard JF, Lapouyade R, Rettig W (1993) J Am Chem Soc 115:2441

    Article  Google Scholar 

  177. Van Damme M, Hofkens J, De Schryver FC (1989) Tetrahedron 45:4693

    Article  Google Scholar 

  178. Klock AM, Rettig W, Hofkens J, van Damme M, De Schryver FC (1995) J Photochem Photobiol, A 85:11

    Article  CAS  Google Scholar 

  179. Lippert E (1957) Z. elektrochemie 61:962

    CAS  Google Scholar 

  180. Lipper E (1955) Z Naturforsch 10A:541

    Google Scholar 

  181. Srividya N, Ramasamy P, Radhakrishanan VT (1997) Spectrochim Acta A 53:1743

    Article  Google Scholar 

  182. PCMODEL, Molecular modeling software. Serena Software, Bloomington

    Google Scholar 

  183. Maus M (1998) Ph.D. Thesis, Humboldt Universität zu Berlin

    Google Scholar 

  184. Lahmani F, Breheret E, Zehnacker-Rentien A, Amatore C, Jutand A (1993) Photochem Photobiol A 70:39

    Article  CAS  Google Scholar 

  185. Lahmani F, Breheret E, Benoist d’Azy O, Zehnacker-Rentien A, Delouis JF (1995) Photochem. Photobiol A 89:191

    Article  CAS  Google Scholar 

  186. Carlotti B, Flamini R, Kikaš I, Mazzuccato U, Spalletti A (2012) Chem Phys 407:9

    Article  CAS  Google Scholar 

  187. Baraldi I, Benassi E, Ciorba S, Šindler-Kulyk M, Škorić I, Spalletti A (2009) Chem Phys 361:61

    Article  CAS  Google Scholar 

  188. Kawski A, Gryczyński I, Jung C, Heckner KH (1977) Z Naturforsch A 32A:420

    CAS  Google Scholar 

  189. Bakhshiev NG (1961) Opt Spektrosk 10:379

    Google Scholar 

  190. Bilot L, Kawski A (1963) Z Naturforsch A 18A:10

    CAS  Google Scholar 

  191. Bilot L, Kawski A (1963) Z Naturforsch A 18A:256

    CAS  Google Scholar 

  192. Bakhshiev NG (1964) Opt Spektrosk 16:821

    CAS  Google Scholar 

  193. Bakhshiev NG (1962) Opt Spectrosk 13:24

    Google Scholar 

  194. Kawski A (2002) Z Naturforsch A 57A:255

    Google Scholar 

  195. Kawski A, Kuklinski B, Bojarski P (2002) Z Naturforsch A 57A:716

    Google Scholar 

  196. Suppan P, Ghoneim N (1997) Solvatochromism. The Royal Society of Chemistry, London

    Google Scholar 

  197. Koutek B (1978) Collect Czech Chem Commun 43:2368. Onsager cavity radius a 0  = 4.41 Å, from DFT Cam-B3LYP/6-31 + G(d)//IEF-PCM(UFF) calculations (present work)

    Google Scholar 

  198. Cerón-Carrasco JP, Jacquemin D, Laurence C, Planchat A, Reichardt C, Sraïdi K (2014) J Phys Chem B 118:4605

    Article  CAS  Google Scholar 

  199. Ravi M, Samanta A, Radhakrishnan TP (1994) J Phys Chem 98:9133

    Article  Google Scholar 

  200. Patil SK, Wari MN, Yohannan Panicker C, Inamdar SR (2014) Spectrochim Acta A 123:117

    Google Scholar 

  201. Manohara SR, Udaya Kumar V, Shivakumaraiah, Gerward L (2013) J Mol Liq 181:97

    Google Scholar 

  202. Homocianu M, Airinei A, Dorohoi DOJ (2011) Adv Res Phys 2:011105

    Google Scholar 

  203. Butler RS, Cohn P, Tenzel P, Abboud KA, Castellano RK (2009) J Am Chem Soc 131:623

    Article  CAS  Google Scholar 

  204. Choi JY, Park EJ, Chang SH, Kang TJ (2009) J Bull Korean Chem Soc 30:1452

    Article  CAS  Google Scholar 

  205. Patra A, Hebalkar N, Sreedhar B, Radhakrishnan TP (2007) J Phys Chem C 111:16184

    Article  CAS  Google Scholar 

  206. Vázquez ME, Blanco JB, Imperiali B (2005) J Am Chem Soc 127:1300

    Article  CAS  Google Scholar 

  207. Webb MA, Morris BC, Edwards WD, Blumenfeld A, Zhao X, McHale JL (2004) J Phys Chem A 108:1515

    Article  CAS  Google Scholar 

  208. Saha S, Samanta A (2002) J Phys Chem A 106:4763

    Article  CAS  Google Scholar 

  209. Bruni S, Cariati E, Cariati F, Porta FA, Quinci S, Roberto D (2001) Spectr Acta A 57:1417

    Article  CAS  Google Scholar 

  210. Zhao X, Burt JA, Knorr FJ, McHale JL (2001) J Phys Chem A 105:11110

    Article  CAS  Google Scholar 

  211. Samanta A, Saha S, Fessenden RW (2001) J Phys Chem A 105:5438

    Article  CAS  Google Scholar 

  212. Samanta A, Fessenden RW (2000) J Phys Chem A 104:8577

    Article  CAS  Google Scholar 

  213. Bardeen CJ, Rosenthal SJ, Shank CV (1999) J Phys Chem A 103:10506

    Article  CAS  Google Scholar 

  214. Mente SR, Maroncelli M (1999) J Phys Chem B 103:7704

    Article  CAS  Google Scholar 

  215. Saroja G, Ramachandram B, Saha S, Samanta A (1999) J Phys Chem B 103:2906

    Article  CAS  Google Scholar 

  216. Saha S, Samanta A (1998) J Phys Chem A 102:7903

    Article  CAS  Google Scholar 

  217. Matyushov DV, Schmid R, Ladanyi BM (1997) J Phys Chem B 101:1035

    Article  CAS  Google Scholar 

  218. The N07 and SNS basis sets are available in the download section of http://dreams.sns.it

  219. Shamasundar KR, Knizia G, Werner HJ (2011) J Chem Phys 135:054101

    Article  CAS  Google Scholar 

  220. Neese F (2003) J Chem Phys 119:9428

    Article  CAS  Google Scholar 

  221. Watson TJ, Lotrich VF, Szalay PG, Perera A, Bartlett RJ (2013) J Phys Chem A 117:2569

    Article  CAS  Google Scholar 

  222. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J Chem Theory Comput 6:370

    Article  CAS  Google Scholar 

  223. Biczysko M, Bloino J, Santoro F, Barone V (2011) Computational strategies for spectroscopy: from small molecules to nanosystems (ed Barone V), Chapter 8. Wiley, Chichester

    Google Scholar 

  224. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420

    Article  CAS  Google Scholar 

  225. Vlček A Jr, Záliš S (2007) Coord Chem Rev 251:258

    Article  CAS  Google Scholar 

  226. Barone V, Baiardi A, Biczysko M, Bloino J, Cappelli C, Lipparini F (2012) Phys Chem Chem Phys 14:12404

    Article  CAS  Google Scholar 

  227. Licari D, Baiardi A, Biczysko M, Egidi F, Latouche C, Barone V (2015) J Comput Chem 36:321

    Article  CAS  Google Scholar 

  228. Matyushov DV, Newton MD (2001) J Phys Chem A 105:8516

    Article  CAS  Google Scholar 

  229. Marcus RA (1963) J Chem Phys 38:335

    Google Scholar 

  230. Marcus RA (1963) J Chem Phys 39:460

    Article  Google Scholar 

  231. Marcus RA (1963) J Chem Phys 39:1734

    Article  CAS  Google Scholar 

  232. Marcus RA (1965) J Chem Phys 43:1261

    Article  CAS  Google Scholar 

  233. Marcus RA (1989) J Phys Chem 93:3078

    Article  CAS  Google Scholar 

  234. Ferrer FJA, Cerezo J, Soto J, Improta R, Santoro F (2014) Comp Theor Chem 1040–1041:328

    Article  CAS  Google Scholar 

  235. Mennucci B, Cappelli C, Guido CA, Cammi R, Tomasi J (2009) J Phys Chem A 113:3009

    Article  CAS  Google Scholar 

  236. Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:54103

    Article  CAS  Google Scholar 

  237. Ferrer FJA, Improta R, Santoro F, Barone V (2011) Phys Chem Chem Phys 13:17007

    Article  CAS  Google Scholar 

  238. Improta R, Scalmani G, Frisch MJ, Barone V (2007) J Chem Phys 127:074504

    Article  CAS  Google Scholar 

  239. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405

    Article  CAS  Google Scholar 

  240. Improta R, Barone V, Santoro F (2007) J Phys Chem B 111:14080

    Article  CAS  Google Scholar 

  241. Latouche C, Baiardi A, Barone V (2014) J Phys Chem B (in press)

    Google Scholar 

  242. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  243. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  244. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  245. Jr Dunning T H, Hay PJ (1977) Mod Theor Chem 3:1

    Google Scholar 

  246. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  247. Hay PJ, wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  248. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  249. Bloino J, Biczysko M, Santoro F, Barone V (2010) J Chem Theory Comput 6:1256

    Article  CAS  Google Scholar 

  250. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  251. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct: Theochem 464:211

    Google Scholar 

  252. GAUSSIAN 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada H, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  253. Barata-Morgado R, Sánchez ML, Galván IF, Corchado JC, Martín ME, Muñoz-Losa A, Aguilar MA (2013) Theor Chem Acc 132:1390

    Article  CAS  Google Scholar 

  254. Benassi E, Cappelli C, Carlotti B, Barone V (2014) Phys Chem Chem Phys 16:26963

    Article  CAS  Google Scholar 

  255. Bartosewicz B, Kawski A (1971) Bull Acad Pol Sci Ser Sci Math Astronom Phys 19:249

    Google Scholar 

  256. Deurnie M, Viallet P, Jacquignon P, Croisy-Delcey MC (1976) R Acad Sci C 283:57

    Google Scholar 

  257. Strahle H, Seitz W, Glisten H (1976) Ber Bunsenges Phys Chem 80:288

    Article  Google Scholar 

  258. For dye C, the angle formed by g and the transition moment has been measured experimentally, viz. ≈ 30°, see Ref. 242

    Google Scholar 

  259. Liptay W, Weisenberger H, Tiemann F, Eberlein W, Konopka G (1968) Z Naturf 23A:377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Barone .

Editor information

Editors and Affiliations

Appendices

Appendix A: Spherical Cavity Embedded By One or More Concentric Dielectric Shells Surrounded By the Bulk

In the following, we show a natural extension of the spherical model for concentric dielectric continua, and in particular the case of a cavity embedded by one concentric dielectric shell surrounded by the bulk (see Fig. A.1a), whose solution is due to Beveridge and Schnuelle [87], and the case of two or more concentric dielectric shells surrounded by the bulk (see Fig. A.1b, c), which we propose here.

Fig. A.1
figure 14

Spherical models of concentric dielectric media

17.1.1 A.1 Spherical Cavity Embedded by One Concentric Dielectric Shell Surrounded by the Bulk

We consider now the charge distribution inside a spherical cavity of radius \( r = a_{C} = {\text{constant}} \) and dielectric constant \( \varepsilon_{C} \), with a first shell of polarisable dielectric, extending from \( r = a_{C} \) to \( r = a_{1} = {\text{constant}} \), characterised by dielectric constant \( \varepsilon_{1} \). Beyond this shell, there is the bulk region, from \( r = a_{1} \) to infinity, with dielectric constant \( \varepsilon_{B} \). The solution of Laplace’s Eq. (3.10) is the same of the single spherical cavity case, but it is needed to introduce coefficients so that the expressions for the potential in the three regions (viz. cavity, shell, and bulk) are:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {A_{nm}^{C} + A_{nm}^{\left( 1 \right)} } \right)r^{n} + B_{nm}^{C} r^{{ - \left( {n + 1} \right)}} } \right]P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad r < a_{C} , $$
(A.1)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {A_{nm}^{\left( 1 \right)} r^{n} + B_{nm}^{\left( 1 \right)} r^{{ - \left( {n + 1} \right)}} } \right]P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad a_{C} < r < a_{1} , $$
(A.2)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {B_{nm}^{B} r^{{ - \left( {n + 1} \right)}} P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad r > a_{1} . $$
(A.3)

The Reaction Potential,

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {A_{nm}^{C} + A_{nm}^{\left( 1 \right)} } \right)r^{n} P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad r < a_{C} , $$
(A.4)

contains now two contributions, due to the polarisation of the local dielectric due to the cavity (\( A_{nm}^{C} \)) and the polarisation of the bulk dielectric due to the shell (\( A_{nm}^{\left( 1 \right)} \)). Concerning the boundary conditions, we have two per each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{r = a_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{r = a_{C}^{ + } }} , $$
(A.5a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial r}} \right)_{{r = a_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial r}} \right)_{{r = a_{C}^{ + } }} , $$
(A.5b)
$$ \left( {\varPhi_{1} } \right)_{{r = a_{1}^{ - } }} = \left( {\varPhi_{B} } \right)_{{r = a_{1}^{ + } }} , $$
(A.5c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial r}} \right)_{{r = a_{1}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial r}} \right)_{{r = a_{1}^{ + } }} , $$
(A.5d)

or, explicitly:

$$ \varepsilon_{C}^{ - 1} \left[ {\left( {A_{nm}^{C} + A_{nm}^{\left( 1 \right)} } \right)a_{C}^{n} + B_{nm}^{C} a_{C}^{{ - \left( {n + 1} \right)}} } \right] = \varepsilon_{1}^{ - 1} \left[ {A_{nm}^{\left( 1 \right)} a_{C}^{n} + B_{nm}^{\left( 1 \right)} a_{C}^{{ - \left( {n + 1} \right)}} } \right], $$
(A.6a)
$$ nA_{nm}^{C} a_{C}^{n - 1} - \left( {n + 1} \right)B_{nm}^{C} a_{C}^{{ - \left( {n + 2} \right)}} = - \left( {n + 1} \right)B_{nm}^{\left( 1 \right)} a_{C}^{{ - \left( {n + 2} \right)}} , $$
(A.6b)
$$ \varepsilon_{1}^{ - 1} \left[ {A_{nm}^{\left( 1 \right)} a_{1}^{n} + B_{nm}^{\left( 1 \right)} a_{1}^{{ - \left( {n + 1} \right)}} } \right] = \varepsilon_{B}^{ - 1} B_{nm}^{B} a_{1}^{{ - \left( {n + 1} \right)}} , $$
(A.6c)
$$ nA_{nm}^{\left( 1 \right)} a_{1}^{n - 1} - \left( {n + 1} \right)B_{nm}^{\left( 1 \right)} a_{1}^{{ - \left( {n + 2} \right)}} = - \left( {n + 1} \right)B_{nm}^{B} a_{1}^{{ - \left( {n + 2} \right)}} . $$
(A.6d)

Eliminating \( B_{nm}^{\left( 1 \right)} \) from (A.6a) and (A.6b), and \( B_{nm}^{B} \) from (A.6c) and (A.6d), we obtain:

$$ A_{nm}^{C} = \frac{{\left( {n + 1} \right)\left( {1 - \varepsilon^{\prime}_{{C^{*} }} } \right)}}{{\left( {n + 1} \right)\varepsilon^{\prime}_{{C^{*} }} + n}}\frac{{B_{nm}^{C} }}{{a_{C}^{2n + 1} }}, $$
(A.7)
$$ A_{nm}^{\left( 1 \right)} = \frac{{\left( {n + 1} \right)\left( {1 - \varepsilon_{{1^{*} }} } \right)}}{{\left( {n + 1} \right)\varepsilon_{{1^{*} }} + n}}\frac{{B_{nm}^{\left( 1 \right)} }}{{a_{1}^{2n + 1} }}, $$
(A.8)
$$ \begin{aligned} B_{nm}^{\left( 1 \right)} & = \varepsilon^{\prime}_{{C^{*} }} \left[ {A_{nm}^{\left( 1 \right)} a_{C}^{2n + 1} + B_{nm}^{C} } \right] \\ & \quad = \left[ {1 - \frac{n}{n + 1}g^{\prime}_{n} \left( {\varepsilon^{\prime}_{{C^{*} }} } \right)} \right]B_{nm}^{C} , \\ \end{aligned} $$
(A.9)

where:

$$ \varepsilon^{\prime}_{{C^{*} }} = \varepsilon_{{C^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{C^{*} }} } \right)g^{\prime}_{n} \left( {\varepsilon_{{1^{*} }} } \right)\left( {\frac{{a_{C} }}{{a_{1} }}} \right)^{2n + 1} } \right]^{ - 1}, $$
(A.10)
$$ g^{\prime}_{n} \left( \varepsilon \right) \equiv \frac{1 - \varepsilon }{{\frac{n}{n + 1} + \varepsilon }}, $$
(A.11)

and \( \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \), \( \varepsilon_{{1^{*} }} \equiv \varepsilon_{B} /\varepsilon_{1} \). Finally, Helmholtz’s free energy reads:

$$ A = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\frac{{Q^{\prime}_{n} }}{{a_{C}^{2n + 1} }}} , $$
(A.12)
$$ Q^{\prime}_{n} \equiv \left\{ {g^{\prime}_{n} \left( {\varepsilon^{\prime}_{{C^{*} }} } \right) + \left[ {1 - \frac{n}{n + 1}g^{\prime}_{n} \left( {\varepsilon^{\prime}_{{C^{*} }} } \right)} \right]g^{\prime}_{n} \left( {\varepsilon_{{1^{*} }} } \right)\left( {\frac{{a_{C} }}{{a_{1} }}} \right)^{2n + 1} } \right\}Q_{n} . $$
(A.13)

17.1.2 A.2 Spherical Cavity Embedded by Two Concentric Dielectric Shells Surrounded by the Bulk

If we consider two spherical concentric dielectric shells, defined by the conditions:

$$ r = a_{C} = {\text{constant,}} $$
(A.14a)
$$ r = a_{1} = {\text{constant}} > a_{C} , $$
(A.14b)
$$ r = a_{2} = {\text{constant}} > a_{1} , $$
(A.14c)

we have now four different dielectric regions, viz. the cavity (with dielectric constant \( \varepsilon_{C} \)), the inner shell (with dielectric constant \( \varepsilon_{1} \)), the outer shell (with dielectric constant \( \varepsilon_{2} \)), and the bulk (with dielectric constant \( \varepsilon_{B} \)). The electric potential in the four regions is expressed by:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {A_{nm}^{C} + A_{nm}^{\left( 1 \right)} + A_{nm}^{\left( 2 \right)} } \right)r^{n} + B_{nm}^{C} r^{{ - \left( {n + 1} \right)}} } \right]P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad r < a_{C} , $$
(A.15)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {A_{nm}^{\left( 1 \right)} + A_{nm}^{\left( 2 \right)} } \right)r^{n} + B_{nm}^{\left( 1 \right)} r^{{ - \left( {n + 1} \right)}} } \right]P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad a_{C} < r < a_{1} , $$
(A.16)
$$ \varPhi_{2} = \varepsilon_{2}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {A_{nm}^{\left( 2 \right)} r^{n} + B_{nm}^{\left( 2 \right)} r^{{ - \left( {n + 1} \right)}} } \right]P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad a_{1} < r < a_{2} , $$
(A.17)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {B_{nm}^{B} r^{{ - \left( {n + 1} \right)}} P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } .\quad r > a_{2} . $$
(A.18)

The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {A_{nm}^{C} + A_{nm}^{\left( 1 \right)} + A_{nm}^{\left( 2 \right)} } \right)r^{n} P_{n}^{m} \left( {\cos \theta } \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad r < a_{C} , $$
(A.19)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{r = a_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{r = a_{C}^{ + } }} , $$
(A.20a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial r}} \right)_{{r = a_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial r}} \right)_{{r = a_{C}^{ + } }} , $$
(A.20b)
$$ \left( {\varPhi_{1} } \right)_{{r = a_{1}^{ - } }} = \left( {\varPhi_{2} } \right)_{{r = a_{1}^{ + } }} , $$
(A.20c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial r}} \right)_{{r = a_{1}^{ - } }} = \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial r}} \right)_{{r = a_{1}^{ + } }} , $$
(A.20d)
$$ \left( {\varPhi_{2} } \right)_{{r = a_{2}^{ - } }} = \left( {\varPhi_{B} } \right)_{{r = a_{2}^{ + } }} , $$
(A.20e)
$$ \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial r}} \right)_{{r = a_{2}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial r}} \right)_{{r = a_{2}^{ + } }} , $$
(A.20f)

which enable to reach the final formulae for Helmholtz’s free energy:

$$ A = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {g_{n} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} } \right)\frac{{Q^{\prime\prime}_{n} }}{{a_{C}^{2n + 1} }}} , $$
(A.21)

where:

$$ Q^{\prime\prime}_{n} \equiv \sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} r_{k}^{n} r_{l}^{n} \sum\limits_{m} {g^{\prime\prime}_{nm} \frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}P_{n}^{m} \left( {\cos \theta_{k} } \right)P_{n}^{m} \left( {\cos \theta_{l} } \right){\text{e}}^{{{\text{i}}m\left( {\phi_{l} - \phi_{k} } \right)}} } } } , $$
(A.22)
$$ \left\{ \begin{aligned} \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \hfill \\ \varepsilon_{{1^{*} }} \equiv \varepsilon_{2} /\varepsilon_{1} \hfill \\ \varepsilon_{{2^{*} }} \equiv \varepsilon_{B} /\varepsilon_{2} \hfill \\ \end{aligned} \right., $$
(A.23)
$$ \left\{ \begin{aligned} \varepsilon^{\prime}_{{C^{*} }} \equiv \varepsilon_{{C^{*} }} \left[ {1 + g_{n} \left( {\varepsilon^{\prime}_{{1^{*} }} } \right)\frac{{1 - \varepsilon_{{C^{*} }} }}{{\left( {n + m} \right)!}}\left( {\frac{{a_{C} }}{{a_{1} }}} \right)^{2n + 1} } \right]^{ - 1} \hfill \\ \varepsilon^{\prime}_{{1^{*} }} \equiv \varepsilon_{{1^{*} }} \left[ {1 + g_{n} \left( {\varepsilon_{{2^{*} }} } \right)\frac{{1 - \varepsilon_{{1^{*} }} }}{{\left( {n + m} \right)!}}\left( {\frac{{a_{1} }}{{a_{2} }}} \right)^{2n + 1} } \right]^{ - 1} \hfill \\ \end{aligned} \right., $$
(A.24)
$$ \varepsilon^{\prime\prime}_{{C^{*} }} \equiv \varepsilon^{\prime}_{{C^{*} }} \left\{ {1 - \frac{{\varepsilon^{\prime}_{{C^{*} }} }}{{\varepsilon_{{C^{*} }} }}\left[ {\left( {n + m} \right)! - \left( {1 + \frac{{\varepsilon^{\prime}_{{1^{*} }} }}{{n\left( {1 + \varepsilon^{\prime}_{{1^{*} }} } \right)}}} \right)^{ - 1} } \right]g_{n} \left( {\varepsilon_{{2^{*} }} } \right)\frac{{1 - \varepsilon_{{C^{*} }} }}{{\left[ {\left( {n + m} \right)!} \right]^{2} }}\left( {\frac{{a_{C} }}{{a_{2} }}} \right)^{2n + 1} } \right\}^{ - 1} , $$
(A.25)
$$ g^{\prime\prime}_{nm} \equiv \frac{1}{{\left( {n + m} \right)!}}\left\{ {\begin{array}{*{20}l} {1 + \frac{{g_{n} \left( {\varepsilon^{\prime}_{{1^{*} }} } \right)}}{{g_{n} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} } \right)}}\left( {\frac{{a_{1} }}{{a_{C} }}} \right)^{2n + 1} \left[ {1 - g_{n} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} } \right)\frac{{\frac{n}{n + 1}}}{{\left( {n + m} \right)!}}\left( {\frac{{a_{1} }}{{a_{C} }}} \right)^{2n + 1} } \right]} \hfill \\ { + \frac{{g_{n} \left( {\varepsilon_{{2^{*} }} } \right)}}{{g_{n} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} } \right)}}\left( {\frac{{a_{2} }}{{a_{C} }}} \right)^{2n + 1} \left[ {1 - g_{n} \left( {\varepsilon^{\prime}_{{1^{*} }} } \right)\frac{{\frac{n}{n + 1}}}{{\left( {n + m} \right)!}}} \right]\left[ {1 - g_{n} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} } \right)\frac{{\frac{n}{n + 1}}}{{\left( {n + m} \right)!}}} \right]} \hfill \\ \end{array} } \right\}, $$
(A.26)
$$ g_{n} \left( \varepsilon \right) \equiv \frac{1 + \varepsilon }{{\frac{n}{n + 1} + \varepsilon }}. $$
(A.27)

Appendix B Spheroidal Cavity Embedded By One or More Concentric Dielectric Shells Surrounded By the Bulk

17.2.1 B.1 Spheroidal Cavity Embedded by One Concentric Dielectric Shell Surrounded by the Bulk

As we have seen for the spherical model, also the spheroidal model can be extended, considering concentring shells (Fig. B.1).

Fig. B.1
figure 15

Spheroidal models of concentric dielectric media

We can investigate first the charge distribution inside a prolate spheroidal cavity, defined by the condition \( \lambda = \lambda_{C} = a_{C} /d = {\text{constant}} \) and dielectric constant \( \varepsilon_{C} \), with a first shell of polarisable dielectric, extending from \( \lambda = \lambda_{C} \) to \( \lambda = \lambda_{1} = a_{1} /d = {\text{constant}} > \lambda_{C} \), characterised by dielectric constant \( \varepsilon_{1} \). Beyond this shell, there is the bulk region, from \( \lambda = \lambda_{1} \) to infinity, with dielectric constant \( \varepsilon_{B} \). The solution of Laplace’s Equation (3.10) is the same of the single spheroidal cavity case, but it is needed to introduce coefficients so that the expressions for the potential in the three regions (viz. cavity, shell, and bulk) are:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} } \right)d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{C} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda < \lambda_{C} , $$
(B.1)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\text{A}_{nm}^{\left( 1 \right)} d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda_{C} < \lambda < \lambda_{1} , $$
(B.2)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\text{B}_{nm}^{B} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda > \lambda_{1} . $$
(B.3)

The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} } \right)d^{n} P_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda < \lambda_{C} , $$
(B.4)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{\lambda = \lambda_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{\lambda = \lambda_{C}^{ + } }} , $$
(B.5a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{C}^{ + } }} , $$
(B.5b)
$$ \left( {\varPhi_{1} } \right)_{{\lambda = \lambda_{1}^{ - } }} = \left( {\varPhi_{B} } \right)_{{\lambda = \lambda_{1}^{ + } }} , $$
(B.5c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{1}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{1}^{ + } }} , $$
(B.5d)

or, explicitly:

$$ \varepsilon_{C}^{ - 1} \left[ {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} } \right)d^{n} P_{n}^{m} \left( {\lambda_{C} } \right) + \text{B}_{nm}^{C} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( {\lambda_{C} } \right)} \right] = \varepsilon_{1}^{ - 1} \left[ {\text{A}_{nm}^{\left( 1 \right)} d^{n} P_{n}^{m} \left( {\lambda_{C} } \right) + \text{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( {\lambda_{C} } \right)} \right] $$
(B.6a)
$$ \varvec{A}_{nm}^{C} d^{n} \dot{P}_{n}^{m} \left( {\lambda_{C} } \right) + \varvec{B}_{nm}^{C} d^{{ - \left( {n + 1} \right)}} \dot{Q}_{n}^{m} \left( {\lambda_{C} } \right) = \varvec{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} \dot{Q}_{n}^{m} \left( {\lambda_{C} } \right), $$
(B.6b)
$$ \varepsilon_{1}^{ - 1} \left[ {\varvec{A}_{nm}^{\left( 1 \right)} d^{n} P_{n}^{m} \left( {\lambda_{1} } \right) + \varvec{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( {\lambda_{1} } \right)} \right] = \varepsilon_{B}^{ - 1} \varvec{B}_{nm}^{B} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( {\lambda_{1} } \right), $$
(B.6c)
$$ \varvec{A}_{nm}^{\left( 1 \right)} d^{n} \dot{P}_{n}^{m} \left( {\lambda_{1} } \right) + \varvec{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} \dot{Q}_{n}^{m} \left( {\lambda_{1} } \right) = \varvec{B}_{nm}^{B} d^{{ - \left( {n + 1} \right)}} \dot{Q}_{n}^{m} \left( {\lambda_{1} } \right). $$
(B.6d)

Eliminating \( \text{B}_{nm}^{\left( 1 \right)} \) from (B.6a) and (B.6b), and \( \text{B}_{nm}^{B} \) from (B.6c) and (B.6d), we obtain:

$$ \text{A}_{nm}^{C} = \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\lambda_{C} } \right)\frac{{\text{B}_{nm}^{C} }}{{d^{2n + 1} }}, $$
(B.7)
$$ \begin{aligned} \varvec{A}_{nm}^{\left( 1 \right)} & = \gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\lambda_{1} } \right)\frac{{\varvec{B}_{nm}^{\left( 1 \right)} }}{{d^{2n + 1} }} \\ & \quad = \left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\lambda_{C} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{C} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{C} } \right)}}} \right]\gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\lambda_{1} } \right)\frac{{\varvec{B}_{nm}^{C} }}{{d^{2n + 1} }}, \\ \end{aligned} $$
(B.8)

where:

$$ \text{B}_{nm}^{C} = \left( { - 1} \right)^{m} \left( {2n + 1} \right)\left[ {\frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}} \right]^{2} d^{n} \sum\limits_{k} {q_{k} P_{n}^{m} \left( {\lambda_{k} } \right)P_{n}^{m} \left( {\mu_{k} } \right){\text{e}}^{{ - {\text{i}}m\phi_{k} }} } $$
(B.9)
$$ \varepsilon^{\prime}_{{C^{*} }} = \varepsilon_{{C^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{C^{*} }} } \right)\gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\lambda_{1} } \right)\frac{{P_{n}^{m} \left( {\lambda_{C} } \right)}}{{Q_{n}^{m} \left( {\lambda_{C} } \right)}}} \right]^{ - 1} , $$
(B.10)

and \( \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \), \( \varepsilon_{{1^{*} }} \equiv \varepsilon_{B} /\varepsilon_{1} \). Finally, Helmholtz’s free energy reads:

$$ \begin{aligned} A & = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\frac{2n + 1}{d}\sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} \sum\limits_{m} {\left( { - 1} \right)^{m} \gamma^{\prime}_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\varepsilon_{{1^{*} }} ,\lambda_{C} ,\lambda_{1} } \right)\left[ {\frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}} \right]^{2} } } } } \\ & \quad \times P_{n}^{m} \left( {\lambda_{k} } \right)P_{n}^{m} \left( {\lambda_{l} } \right)P_{n}^{m} \left( {\mu_{k} } \right)P_{n}^{m} \left( {\mu_{l} } \right){\text{e}}^{{{\text{i}}m\left( {\phi_{l} - \phi_{k} } \right)}} , \\ \end{aligned} $$
(B.11)

where:

$$ \gamma^{\prime}_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\varepsilon_{{1^{*} }} ,\lambda_{C} ,\lambda_{1} } \right) \equiv \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\lambda_{C} } \right) + \gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\lambda_{1} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\lambda_{C} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{C} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{C} } \right)}}} \right]. $$
(B.12)

The final expressions for the oblate spheroid problem can be straightforwardly obtained by those of the prolate case, by making the substitutions (4.47).

17.2.2 B.2 Spheroidal Cavity Embedded by Two or More Concentric Dielectric Shells Surrounded by the Bulk

If we consider two prolate spheroidal concentric dielectric shells, defined by the conditions:

$$ \lambda = \lambda_{C} = a_{C} /d = {\text{constant,}} $$
(B.13a)
$$ \lambda = \lambda_{1} = a_{1} /d = {\text{constant}} > \lambda_{C} , $$
(B.13b)
$$ \lambda = \lambda_{2} = a_{2} /d = {\text{constant}} > \lambda_{1} , $$
(B.13c)

we have now four different dielectric regions, viz. the cavity (characterised by dielectric constant \( \varepsilon_{C} \)), the inner shell (characterised by dielectric constant \( \varepsilon_{1} \)), the outer shell (characterised by dielectric constant \( \varepsilon_{2} \)), and the bulk (characterised by dielectric constant \( \varepsilon_{B} \)). The electric potential in the four regions are expressed by:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{C} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda < \lambda_{C} , $$
(B.14)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda_{C} < \lambda < \lambda_{1} , $$
(B.15)
$$ \varPhi_{2} = \varepsilon_{2}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\text{A}_{nm}^{\left( 2 \right)} d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{\left( 2 \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda_{1} < \lambda < \lambda_{2} , $$
(B.16)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\text{B}_{nm}^{B} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } .\quad \lambda > \lambda_{2} . $$
(B.17)

The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)d^{n} P_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda < \lambda_{C} , $$
(B.18)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{\lambda = \lambda_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{\lambda = \lambda_{C}^{ + } }} , $$
(B.19a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{C}^{ + } }} , $$
(B.19b)
$$ \left( {\varPhi_{1} } \right)_{{\lambda = \lambda_{1}^{ - } }} = \left( {\varPhi_{2} } \right)_{{\lambda = \lambda_{1}^{ + } }} , $$
(B.19c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{1}^{ - } }} = \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{1}^{ + } }} , $$
(B.19d)
$$ \left( {\varPhi_{2} } \right)_{{\lambda = \lambda_{2}^{ - } }} = \left( {\varPhi_{B} } \right)_{{\lambda = \lambda_{2}^{ + } }} , $$
(B.19e)
$$ \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{2}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{2}^{ + } }} , $$
(B.19f)

which enable to reach the final formulae for the reaction potential:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\lambda_{C} ,\lambda_{1} ,\lambda_{2} } \right)\text{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} P_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } , $$
(B.20)

and Helmholtz’s free energy:

$$ \begin{aligned} A & = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\frac{2n + 1}{d}\sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} \sum\limits_{m} {\left( { - 1} \right)^{m} \gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\lambda_{C} ,\lambda_{1} ,\lambda_{2} } \right)\left[ {\frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}} \right]^{2} } } } } \\ & \quad \times P_{n}^{m} \left( {\lambda_{k} } \right)P_{n}^{m} \left( {\lambda_{l} } \right)P_{n}^{m} \left( {\mu_{k} } \right)P_{n}^{m} \left( {\mu_{l} } \right){\text{e}}^{{{\text{i}}m\left( {\phi_{l} - \phi_{k} } \right)}} , \\ \end{aligned} $$
(B.21)

where:

$$ \left\{ \begin{aligned} \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \hfill \\ \varepsilon_{{1^{*} }} \equiv \varepsilon_{2} /\varepsilon_{1} \hfill \\ \varepsilon_{{2^{*} }} \equiv \varepsilon_{B} /\varepsilon_{2} \hfill \\ \end{aligned} \right., $$
(B.22)
$$ \left\{ \begin{aligned} \varepsilon^{\prime}_{{C^{*} }} \equiv \varepsilon_{{C^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{C^{*} }} } \right)\gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\lambda_{1} } \right)\frac{{P_{n}^{m} \left( {\lambda_{C} } \right)}}{{Q_{n}^{m} \left( {\lambda_{C} } \right)}}} \right]^{ - 1} \hfill \\ \varepsilon^{\prime}_{{1^{*} }} \equiv \varepsilon_{{1^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{1^{*} }} } \right)\gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\lambda_{2} } \right)\frac{{P_{n}^{m} \left( {\lambda_{1} } \right)}}{{Q_{n}^{m} \left( {\lambda_{1} } \right)}}} \right]^{ - 1} \hfill \\ \end{aligned} \right., $$
(B.23)
$$ \varepsilon^{\prime\prime}_{{C^{*} }} \equiv \varepsilon^{\prime}_{{C^{*} }} \left\{ {1 + \varepsilon^{\prime}_{{C^{*} }} \left( {1 - \frac{1}{{\varepsilon_{{C^{*} }} }}} \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\lambda_{1} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{1} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{1} } \right)}}} \right]\gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\lambda_{2} } \right)\frac{{P_{n}^{m} \left( {\lambda_{C} } \right)}}{{Q_{n}^{m} \left( {\lambda_{C} } \right)}}} \right\}^{ - 1} , $$
(B.24)
$$ \begin{aligned} & \gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\lambda_{C} ,\lambda_{1} ,\lambda_{2} } \right) \equiv \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\lambda_{C} } \right) \\ & \quad + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\lambda_{1} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\lambda_{C} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{1} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{1} } \right)}}} \right] \\ & \quad + \gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\lambda_{2} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\lambda_{1} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{1} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{1} } \right)}}} \right]\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\lambda_{C} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{C} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{C} } \right)}}} \right]. \\ \end{aligned} $$
(B.25)

The expressions for the oblate spheroidal cavity can be obtained with the substitutions (4.47).

This approach can be generalised for a system accounting for L prolate spheroidal concentric dielectric shells, where the S-th shell is defined by the condition \( \lambda = \lambda_{S} = a_{S} /d = {\text{constant}} \), and characterised by a dielectric constant \( \varepsilon_{S} \). The potentials can be expressed as:

$$ \varPhi_{S} = \varepsilon_{S}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\sum\limits_{\sigma = S}^{L} {\text{A}_{nm}^{\left( \sigma \right)} } } \right)d^{n} P_{n}^{m} \left( \lambda \right) + \text{B}_{nm}^{\left( S \right)} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)} \right]P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad S = 0,1, \ldots L, $$
(B.26)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\text{B}_{nm}^{B} d^{{ - \left( {n + 1} \right)}} Q_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda > \lambda_{L} . $$
(B.27)

where S = 0 = C correspond to the inner cavity. The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {\sum\limits_{\sigma = 0}^{L} {\text{A}_{nm}^{\left( \sigma \right)} } } \right)d^{n} P_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } ,\quad \lambda < \lambda_{C} , $$
(B.28)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{S} } \right)_{{\lambda = \lambda_{S}^{ - } }} = \left( {\varPhi_{S + 1} } \right)_{{\lambda = \lambda_{S}^{ + } }} , $$
(B.29a)
$$ \varepsilon_{S} \left( {\frac{{\partial \varPhi_{S} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{S}^{ - } }} = \varepsilon_{S + 1} \left( {\frac{{\partial \varPhi_{S + 1} }}{\partial \lambda }} \right)_{{\lambda = \lambda_{S}^{ + } }} , $$
(B.29b)

where S = 0, 1,… L (S = 0 = C corresponds to the inner cavity, S = L + 1 = B corresponds to the outer bulk). which enable to reach the final formulae for the reaction potential:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\gamma_{nm}^{\left( L \right)} \left( {\left\{ {\varepsilon_{{\sigma^{*} }}^{{\left( {L - \sigma } \right)}} ,\lambda_{\sigma } } \right\}_{\sigma = 0,1, \ldots L} } \right)\text{B}_{nm}^{\left( 1 \right)} d^{{ - \left( {n + 1} \right)}} P_{n}^{m} \left( \lambda \right)P_{n}^{m} \left( \mu \right){\text{e}}^{{{\text{i}}m\phi }} } } , $$
(B.30)

and Helmholtz’s free energy:

$$ \begin{aligned} A & = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\frac{2n + 1}{d}\sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} \sum\limits_{m} {\left( { - 1} \right)^{m} \gamma_{nm}^{\left( L \right)} \left( {\left\{ {\varepsilon_{{\sigma^{*} }}^{{\left( {L - \sigma } \right)}} ,\lambda_{\sigma } } \right\}_{\sigma = 0,1, \ldots L} } \right)\left[ {\frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}} \right]^{2} } } } } \\ & \quad \times P_{n}^{m} \left( {\lambda_{k} } \right)P_{n}^{m} \left( {\lambda_{l} } \right)P_{n}^{m} \left( {\mu_{k} } \right)P_{n}^{m} \left( {\mu_{l} } \right){\text{e}}^{{{\text{i}}m\left( {\phi_{l} - \phi_{k} } \right)}} , \\ \end{aligned} $$
(B.31)

where:

$$ \left\{ {\begin{array}{*{20}l} {\varepsilon_{{\sigma^{*} }}} \equiv \varepsilon_{{\sigma + 1 }}/ \varepsilon_{{\sigma}} \\ {\varepsilon^{\prime}_{{\sigma^{*} }} \equiv \varepsilon_{{\sigma^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{\sigma^{*} }} } \right)\gamma_{nm} \left( {\varepsilon^{\prime}_{{\left( {\sigma + 1} \right)^{*} }} ,\lambda_{\sigma + 1} } \right)\frac{{P_{n}^{m} \left( {\lambda_{\sigma } } \right)}}{{Q_{n}^{m} \left( {\lambda_{\sigma } } \right)}}} \right]^{ - 1} } \hfill \\ {\varepsilon^{\prime\prime}_{{\sigma^{*} }} \equiv \varepsilon^{\prime}_{{\sigma^{*} }} \left\{ {1 + \varepsilon^{\prime}_{{\sigma^{*} }} \left( {1 - \frac{1}{{\varepsilon_{{\sigma^{*} }} }}} \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{\left( {\sigma + 1} \right)^{*} }} ,\lambda_{\sigma + 1} } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{\sigma + 1} } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{\sigma + 1} } \right)}}} \right]\gamma_{nm} \left( {\varepsilon_{{\left( {\sigma + 2} \right)^{*} }} ,\lambda_{\sigma + 2} } \right)\frac{{P_{n}^{m} \left( {\lambda_{\sigma } } \right)}}{{Q_{n}^{m} \left( {\lambda_{\sigma } } \right)}}} \right\}^{ - 1} } \hfill \\ \vdots \hfill \\ \end{array} ,} \right. $$
(B.32)
$$ \gamma_{nm}^{\left( L \right)} \left( {\left\{ {\varepsilon_{{\sigma^{*} }}^{{\left( {L - \sigma } \right)}} ,\lambda_{\sigma } } \right\}_{\sigma = 0,1, \ldots L} } \right) = \left\{ {\sum\limits_{\sigma = 0}^{L} {\gamma_{nm} \left( {\varepsilon_{{\sigma^{*} }}^{{\left( {L - \sigma } \right)}} ,\lambda_{\sigma } } \right)\prod\limits_{\tau = 0}^{\sigma } {\left[ {1 + \gamma_{nm} \left( {\varepsilon_{{\sigma^{*} }}^{{\left( {L - \sigma } \right)}} ,\lambda_{\sigma } } \right)\frac{{\dot{P}_{n}^{m} \left( {\lambda_{\sigma } } \right)}}{{\dot{Q}_{n}^{m} \left( {\lambda_{\sigma } } \right)}}} \right]} } } \right\}. $$
(B.33)

Appendix C Ellipsoidal Cavity Embedded By One or More Concentric Dielectric Shells Surrounded By the Bulk

17.3.1 C.1 Ellipsoidal Cavity Imbedded by One Concentric Dielectric Shell Surrounded by the Bulk

The formalism described above lends itself to be easily extended to the case of cavity imbedded by a concentric dielectric shell surrounded by the bulk. We aim here to investigate the charge distribution inside an ellipsoidal cavity, defined by the condition \( \rho = \rho_{C} = {\text{constant}} \) and dielectric constant \( \varepsilon_{C} \), with a first shell of polarisable dielectric, extending from \( \rho = \rho_{C} \) to \( \rho = \rho_{1} = {\text{constant}} > \rho_{C} \), characterised by dielectric constant \( \varepsilon_{1} \). Beyond this shell, there is the bulk region, from \( \rho = \rho_{1} \) to infinity, with dielectric constant \( \varepsilon_{B} \). The solution of Laplace’s Equation (3.10) is the same of the single ellipsoidal cavity case, but it is needed to introduce coefficients so that the expressions for the potential in the three regions (viz. cavity, shell, and bulk) are:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\varvec{A}_{nm}^{C} + \varvec{A}_{nm}^{\left( 1 \right)} } \right)E_{n}^{m} \left( \rho \right) + \varvec{B}_{nm}^{C} F_{n}^{m} \left( \rho \right)} \right]E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho < \rho_{C} , $$
(C.1)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\text{A}_{nm}^{\left( 1 \right)} E_{n}^{m} \left( \rho \right) + \text{B}_{nm}^{\left( 1 \right)} F_{n}^{m} \left( \rho \right)} \right]E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho_{C} < \rho < \rho_{1} , $$
(C.2)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\text{B}_{nm}^{B} F_{n}^{m} \left( \rho \right)E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho > \rho_{1} . $$
(C.3)

The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} } \right)E_{n}^{m} \left( \rho \right)E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho < \rho_{C} , $$
(C.4)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{\rho = \rho_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{\rho = \rho_{C}^{ + } }} , $$
(C.5a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial \rho }} \right)_{{\rho = \rho_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \rho }} \right)_{{\rho = \rho_{C}^{ + } }} , $$
(C.5b)
$$ \left( {\varPhi_{1} } \right)_{{\rho = \rho_{1}^{ - } }} = \left( {\varPhi_{B} } \right)_{{\rho = \rho_{1}^{ + } }} , $$
(C.5c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \rho }} \right)_{{\rho = \rho_{1}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial \rho }} \right)_{{\rho = \rho_{1}^{ + } }} , $$
(C.5d)

or, explicitly:

$$ \varepsilon_{C}^{ - 1} \left[ {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} } \right)E_{n}^{m} \left( {\rho_{C} } \right) + \text{B}_{nm}^{C} F_{n}^{m} \left( {\rho_{C} } \right)} \right] = \varepsilon_{1}^{ - 1} \left[ {\text{A}_{nm}^{\left( 1 \right)} E_{n}^{m} \left( {\rho_{C} } \right) + \text{B}_{nm}^{\left( 1 \right)} F_{n}^{m} \left( {\rho_{C} } \right)} \right], $$
(C.6a)
$$ \varvec{A}_{nm}^{C} \dot{E}_{n}^{m} \left( {\rho_{C} } \right) + \varvec{B}_{nm}^{C} \dot{F}_{n}^{m} \left( {\rho_{C} } \right) = \varvec{B}_{nm}^{\left( 1 \right)} \dot{F}_{n}^{m} \left( {\rho_{C} } \right), $$
(C.6b)
$$ \varepsilon_{1}^{ - 1} \left[ {\varvec{A}_{nm}^{\left( 1 \right)} E_{n}^{m} \left( {\rho_{1} } \right) + \varvec{B}_{nm}^{\left( 1 \right)} F_{n}^{m} \left( {\rho_{1} } \right)} \right] = \varepsilon_{B}^{ - 1} \varvec{B}_{nm}^{B} F_{n}^{m} \left( {\rho_{1} } \right), $$
(C.6c)
$$ \varvec{A}_{nm}^{\left( 1 \right)} \dot{E}_{n}^{m} \left( {\rho_{1} } \right) + \varvec{B}_{nm}^{\left( 1 \right)} \dot{F}_{n}^{m} \left( {\rho_{1} } \right) = \varvec{B}_{nm}^{B} \dot{F}_{n}^{m} \left( {\rho_{1} } \right). $$
(C.6d)

Eliminating \( \text{B}_{nm}^{\left( 1 \right)} \) from (C.6a) and (C.6b), and \( \text{B}_{nm}^{B} \) from (C.6c) and (C.6d), we obtain:

$$ \text{A}_{nm}^{C} = \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\rho_{C} } \right)\text{B}_{nm}^{C} , $$
(C.7)
$$ \begin{aligned} \varvec{A}_{nm}^{\left( 1 \right)} & = \gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\rho_{1} } \right)\varvec{B}_{nm}^{\left( 1 \right)} \\ & = \left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\rho_{C} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{C} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{C} } \right)}}} \right]\gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\rho_{1} } \right)\varvec{B}_{nm}^{C} , \\ \end{aligned} $$
(C.8)

where:

$$ \text{B}_{nm}^{C} = N_{nm} Q_{nm} , $$
(C.9)
$$ \varepsilon^{\prime}_{{C^{*} }} = \varepsilon_{{C^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{C^{*} }} } \right)\gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,r_{1} } \right)\frac{{E_{n}^{m} \left( {\rho_{C} } \right)}}{{F_{n}^{m} \left( {\rho_{C} } \right)}}} \right]^{ - 1} , $$
(C.10)

and \( \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \), \( \varepsilon_{{1^{*} }} \equiv \varepsilon_{B} /\varepsilon_{1} \). Finally, Helmholtz’s free energy reads:

$$ \begin{aligned} A & = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\sum\limits_{m} {\gamma^{\prime}_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\varepsilon_{{1^{*} }} ,\rho_{C} ,\rho_{1} } \right)N_{nm} \sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} } } } } \\ & \quad \times E_{n}^{m} \left( {\rho_{k} } \right)E_{n}^{m} \left( {\rho_{l} } \right)E_{n}^{m} \left( {\mu_{k} } \right)E_{n}^{m} \left( {\mu_{l} } \right)E_{n}^{m} \left( {\nu_{k} } \right)E_{n}^{m} \left( {\nu_{l} } \right), \\ \end{aligned} $$
(C.11)

where:

$$ \gamma^{\prime}_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\varepsilon_{{1^{*} }} ,\rho_{C} ,\rho_{1} } \right) \equiv \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\rho_{C} } \right) + \gamma_{nm} \left( {\varepsilon_{{1^{*} }} ,\rho_{1} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{C^{*} }} ,\rho_{C} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{C} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{C} } \right)}}} \right]. $$
(C.12)

17.3.2 C.2 Ellipsoidal Cavity Embedded by Two Concentric Dielectric Shells Surrounded by the Bulk

If we consider two ellipsoidal concentric dielectric shells, defined by the conditions:

$$ \rho = \rho_{C} = {\text{constant,}} $$
(C.13a)
$$ \rho = \rho_{1} = {\text{constant}} > \rho_{C} , $$
(C.13b)
$$ \rho = \rho_{2} = {\text{constant}} > \rho_{1} , $$
(C.13c)

we have now four different dielectric regions, viz. the cavity (characterised by dielectric constant \( \varepsilon_{C} \)), the inner shell (characterised by dielectric constant \( \varepsilon_{1} \)), the outer shell (characterised by dielectric constant \( \varepsilon_{2} \)), and the bulk (characterised by dielectric constant \( \varepsilon_{B} \)). The electric potential in the four regions are expressed by:

$$ \varPhi_{C} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)E_{n}^{m} \left( \rho \right) + \text{B}_{nm}^{C} F_{n}^{m} \left( \rho \right)} \right]E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho < \rho_{C} , $$
(C.14)
$$ \varPhi_{1} = \varepsilon_{1}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\left( {\text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)E_{n}^{m} \left( \rho \right) + \text{B}_{nm}^{\left( 1 \right)} F_{n}^{m} \left( \rho \right)} \right]E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho_{C} < \rho < \rho_{1} , $$
(C.15)
$$ \varPhi_{2} = \varepsilon_{2}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left[ {\text{A}_{nm}^{\left( 2 \right)} E_{n}^{m} \left( \rho \right) + \text{B}_{nm}^{\left( 2 \right)} F_{n}^{m} \left( \rho \right)} \right]E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho_{1} < \rho < \rho_{2} , $$
(C.16)
$$ \varPhi_{B} = \varepsilon_{B}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\text{B}_{nm}^{B} F_{n}^{m} \left( \rho \right)E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } .\quad \rho > \rho_{2} . $$
(C.17)

The reaction potential is given by:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\left( {\text{A}_{nm}^{C} + \text{A}_{nm}^{\left( 1 \right)} + \text{A}_{nm}^{\left( 2 \right)} } \right)E_{n}^{m} \left( \rho \right)E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } ,\quad \rho < \rho_{C} , $$
(C.18)

and the boundary conditions are imposed for each surface, i.e.:

$$ \left( {\varPhi_{C} } \right)_{{\rho = \rho_{C}^{ - } }} = \left( {\varPhi_{1} } \right)_{{\rho = \rho_{C}^{ + } }} , $$
(C.19a)
$$ \varepsilon_{C} \left( {\frac{{\partial \varPhi_{C} }}{\partial \rho }} \right)_{{\rho = \rho_{C}^{ - } }} = \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \rho }} \right)_{{\rho = \rho_{C}^{ + } }} , $$
(C.19b)
$$ \left( {\varPhi_{1} } \right)_{{\rho = \rho_{1}^{ - } }} = \left( {\varPhi_{2} } \right)_{{\rho = \rho_{1}^{ + } }} , $$
(C.19c)
$$ \varepsilon_{1} \left( {\frac{{\partial \varPhi_{1} }}{\partial \rho }} \right)_{{\rho = \rho_{1}^{ - } }} = \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial \rho }} \right)_{{\rho = \rho_{1}^{ + } }} , $$
(C.19d)
$$ \left( {\varPhi_{2} } \right)_{{\rho = \rho_{2}^{ - } }} = \left( {\varPhi_{B} } \right)_{{\rho = \rho_{2}^{ + } }} , $$
(C.19e)
$$ \varepsilon_{2} \left( {\frac{{\partial \varPhi_{2} }}{\partial \rho }} \right)_{{\rho = \rho_{2}^{ - } }} = \varepsilon_{B} \left( {\frac{{\partial \varPhi_{B} }}{\partial \rho }} \right)_{{\rho = \rho_{2}^{ + } }} , $$
(C.19f)

which enable to reach the final formulae for the reaction potential:

$$ \varPhi_{\text{R}} = \varepsilon_{C}^{ - 1} \sum\limits_{n} {\sum\limits_{m} {\gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\rho_{C} ,\rho_{1} ,\rho_{2} } \right)N_{nm} Q_{nm} E_{n}^{m} \left( \rho \right)E_{n}^{m} \left( \mu \right)E_{n}^{m} \left( \nu \right)} } , $$
(C.20)

and Helmholtz’s free energy:

$$ \begin{aligned} A & = \frac{1}{{2\varepsilon_{C} }}\sum\limits_{n} {\sum\limits_{m} {\gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\rho_{C} ,\rho_{1} ,\rho_{2} } \right)N_{nm} \sum\limits_{k} {\sum\limits_{l} {q_{k} q_{l} } } } } \\ & \quad \times E_{n}^{m} \left( {\rho_{k} } \right)E_{n}^{m} \left( {\rho_{l} } \right)E_{n}^{m} \left( {\mu_{k} } \right)E_{n}^{m} \left( {\mu_{l} } \right)E_{n}^{m} \left( {\nu_{k} } \right)E_{n}^{m} \left( {\nu_{l} } \right), \\ \end{aligned} $$
(C.21)

where:

$$ \left\{ \begin{aligned} \varepsilon_{{C^{*} }} \equiv \varepsilon_{1} /\varepsilon_{C} \hfill \\ \varepsilon_{{1^{*} }} \equiv \varepsilon_{2} /\varepsilon_{1} \hfill \\ \varepsilon_{{2^{*} }} \equiv \varepsilon_{B} /\varepsilon_{2} \hfill \\ \end{aligned} \right., $$
(C.22)
$$ \left\{ \begin{aligned} \varepsilon^{\prime}_{{C^{*} }} \equiv \varepsilon_{{C^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{C^{*} }} } \right)\gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\rho_{1} } \right)\frac{{E_{n}^{m} \left( {\rho_{C} } \right)}}{{F_{n}^{m} \left( {\rho_{C} } \right)}}} \right]^{ - 1} \hfill \\ \varepsilon^{\prime}_{{1^{*} }} \equiv \varepsilon_{{1^{*} }} \left[ {1 + \left( {1 - \varepsilon_{{1^{*} }} } \right)\gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\rho_{2} } \right)\frac{{E_{n}^{m} \left( {\rho_{1} } \right)}}{{F_{n}^{m} \left( {\rho_{1} } \right)}}} \right]^{ - 1} \hfill \\ \end{aligned} \right., $$
(C.23)
$$ \varepsilon^{\prime\prime}_{{C^{*} }} \equiv \varepsilon^{\prime}_{{C^{*} }} \left\{ {1 + \varepsilon^{\prime}_{{C^{*} }} \left( {1 - \frac{1}{{\varepsilon_{{C^{*} }} }}} \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\rho_{1} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{1} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{1} } \right)}}} \right]\gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\rho_{2} } \right)\frac{{E_{n}^{m} \left( {\rho_{C} } \right)}}{{F_{n}^{m} \left( {\rho_{C} } \right)}}} \right\}^{ - 1} , $$
(C.24)
$$ \begin{aligned} & \gamma^{\prime\prime}_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\varepsilon^{\prime}_{{1^{*} }} ,\varepsilon_{{2^{*} }} ,\rho_{C} ,\rho_{1} ,\rho_{2} } \right) \equiv \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\rho_{C} } \right) \\ & \quad + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\rho_{1} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\rho_{C} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{1} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{1} } \right)}}} \right] \\ & \quad + \gamma_{nm} \left( {\varepsilon_{{2^{*} }} ,\rho_{2} } \right)\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime}_{{1^{*} }} ,\rho_{1} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{1} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{1} } \right)}}} \right]\left[ {1 + \gamma_{nm} \left( {\varepsilon^{\prime\prime}_{{C^{*} }} ,\rho_{C} } \right)\frac{{\dot{E}_{n}^{m} \left( {\rho_{C} } \right)}}{{\dot{F}_{n}^{m} \left( {\rho_{C} } \right)}}} \right]. \\ \end{aligned} $$
(C.25)

Appendix D: Different equations for Stokes shifts

$$ y_{m,s} = y_{m,g}^{\left( 0 \right)} + a_{m} \left[ {x_{s}^{\left( 1 \right)} + x_{s}^{\left( 2 \right)} } \right], $$
(D.1)

Equation

Refs.

\( y_{m,s} \)

\( a_{m}^{\left( i \right)} \)

\( x_{s}^{\left( 1 \right)} \)

\( x_{s}^{\left( 2 \right)} \)

(D.1.1)

[52, 5456, 59, 74]

\( \tilde{\nu }^{a} \)

\( a_{m}^{\left( 1 \right)} \)

\( F_{1} \left( {\varepsilon ,n} \right) \)

\( f_{1} \left( {n^{2} } \right) \)

(D.1.2)

[4951]

 

\( a_{m}^{\left( 1 \right)} \)

\( F_{2} \left( {\varepsilon ,n} \right) \)

\( f_{2} \left( {n^{2} } \right) \)

(D.1.3)

[64, 76, 84]

 

\( a_{m}^{\left( 1 \right)} \)

\( F_{3} \left( {\varepsilon ,n} \right) \)

\( f_{1} \left( {n^{2} } \right) \)

(D.1.4)

[60]

 

\( a_{m}^{\left( 1 \right)} \)

\( F_{3} \left( {\varepsilon ,n} \right) \)

\( f_{3} \left( {n^{2} } \right) \)

(D.1.5)

[77, 8890]

 

\( a_{m}^{\left( 1 \right)} \)

\( f_{2} \left( \varepsilon \right) \)

\( f_{2} \left( {n^{2} } \right) \)

(D.1.6)

[80, 85, 91]

 

\( 2a_{m}^{\left( 2 \right)} \)

\( f_{2} \left( \varepsilon \right) \)

 

(D.1.7)

[80, 85, 91]

 

\( a_{m}^{\left( 2 \right)} \)

\( F_{6} \left( {\varepsilon ,n} \right) \)

 

(D.1.8)

[60, 168]

\( \tilde{\nu }^{f} \)

\( a_{m}^{\left( 3 \right)} \)

\( F_{3} \left( {\varepsilon ,n} \right) \)

\( f_{3} \left( {n^{2} } \right) \)

(D.1.9)

[66, 69, 70, 78, 81, 86, 98]

 

\( a_{m}^{\left( 4 \right)} \)

\( F_{5} \left( {\varepsilon ,n} \right) \)

 

(D.1.10)

[92]

\( \tilde{\nu }^{a} - \tilde{\nu }^{f} \)

\( a_{m}^{\left( 5 \right)} \)

\( F_{1} \left( {\varepsilon ,n} \right) \)

 

(D.1.11)

[57, 61]

 

\( a_{m}^{\left( 5 \right)} \)

\( F_{2} \left( {\varepsilon ,n} \right) \)

 

(D.1.12)

[63, 75, 82, 93]

 

\( a_{m}^{\left( 5 \right)} \)

\( F_{3} \left( {\varepsilon ,n} \right) \)

 

(D.1.13)

[62, 65, 67]

 

\( a_{m}^{\left( 5 \right)} \)

\( F_{3} \left( {\varepsilon ,n} \right) \)

\( f_{1} \left( {n^{2} } \right) \)

(D.1.14)

[58]

\( \tilde{\nu }^{a} + \tilde{\nu }^{f} \)

\( 2a_{m}^{\left( 2 \right)} \)

\( F_{2} \left( {\varepsilon ,n} \right) \)

\( f_{2} \left( {n^{2} } \right) \)

(D.1.15)

[62, 65, 67, 71]

 

\( 2a_{m}^{\left( 2 \right)} \)

\( F_{4} \left( {\varepsilon ,n} \right) \)

\( f_{1} \left( {n^{2} } \right) \)

(D.1.16)

[72, 73, 83]

 

\( 4a_{m}^{\left( 2 \right)} \)

\( F_{7} \left( {\varepsilon ,n} \right) \)

 

where:

$$ \begin{aligned} f_{1} \left( \xi \right) & = \frac{\xi - 1}{\xi + 2},\quad f_{2} \left( \xi \right) = \frac{\xi - 1}{2\xi + 1},\quad f_{3} \left( \xi \right) = \frac{3}{2}\frac{{\xi^{2} - 1}}{{\left( {\xi + 2} \right)^{2} }}, \\ F_{1} \left( {\varepsilon ,n} \right) & = f_{1} \left( \varepsilon \right) - f_{1} \left( {n^{2} } \right),\quad F_{2} \left( {\varepsilon ,n} \right) = f_{2} \left( \varepsilon \right) - f_{2} \left( {n^{2} } \right), \\ F_{3} \left( {\varepsilon ,n} \right) & = F_{1} \left( {\varepsilon ,n} \right)\frac{{f_{1} \left( {n^{2} } \right)}}{{f_{2} \left( {n^{2} } \right)}},\quad F_{4} \left( {\varepsilon ,n} \right) = f_{1} \left( \varepsilon \right)\frac{{f_{1} \left( {n^{2} } \right)}}{{f_{2} \left( {n^{2} } \right)}}, \\ F_{5} \left( {\varepsilon ,n} \right) & = f_{2} \left( \varepsilon \right) - \frac{1}{2}f_{2} \left( {n^{2} } \right),\quad F_{6} \left( {\varepsilon ,n} \right) = 2f_{1} \left( \varepsilon \right) - f_{1} \left( {n^{2} } \right), \\ F_{7} \left( {\varepsilon ,n} \right) & = \frac{1}{2}F_{3} \left( {\varepsilon ,n} \right) + f_{3} \left( {n^{2} } \right), \\ a_{m}^{\left( 1 \right)} & = - \frac{2}{{hca_{0}^{3} }}{\varvec{\upmu}}_{g} \cdot \left( {{\varvec{\upmu}}_{e} - {\varvec{\upmu}}_{g} } \right),\quad a_{m}^{\left( 2 \right)} = - \frac{1}{{hca_{0}^{3} }}\left( {\mu_{e}^{2} - \mu_{g}^{2} } \right),\quad a_{m}^{\left( 3 \right)} = - \frac{2}{{hca_{0}^{3} }}{\varvec{\upmu}}_{e} \cdot \left( {{\varvec{\upmu}}_{e} - {\varvec{\upmu}}_{g} } \right), \\ a_{m}^{\left( 4 \right)} & = - \frac{2}{{hca_{0}^{3} }}\mu_{e}^{2} ,\quad a_{m}^{\left( 5 \right)} = + \frac{2}{{hca_{0}^{3} }}\left( {{\varvec{\upmu}}_{e} - {\varvec{\upmu}}_{g} } \right)^{2} . \\ \end{aligned} $$

Appendix E: Derivation of Ravi’s Equation

The starting point for the derivation of Ravi’s formula is the following equation [193, 211, 255258],

$$ \tilde{\nu }^{a} - \tilde{\nu }^{f} = \frac{2}{{hca_{0}^{3} }}\left( {{\varvec{\upmu}}_{e} - {\varvec{\upmu}}_{g} } \right)^{2} \left[ {f_{1} \left( \varepsilon \right) - f_{1} \left( {n^{2} } \right)} \right], $$
(E.1)

which is the best analytical model for the description of the solvatochromism (see Sect. 4.1); the equation is written—according to the Authors’ notation—as follows:

$$ Y\left( {m,s} \right) = B\left( m \right)X\left( s \right) + Y^\circ \left( {m,g} \right), $$
(E.2)

where:

$$ \left\{ {\begin{array}{*{20}l} {Y\left( {m,s} \right) \equiv \tilde{\nu }_{a} - \tilde{\nu }_{f} } \hfill \\ {B\left( m \right) \equiv \frac{{2\left( {\Delta {\varvec{\upmu}}} \right)^{2} }}{{hca^{3} }} = \frac{{2\left( {{\varvec{\upmu}}_{e} - {\varvec{\upmu}}_{g} } \right)^{2} }}{{hca^{3} }}} \hfill \\ {X\left( s \right) \equiv \left( {\frac{\varepsilon - 1}{\varepsilon + 2} - \frac{{n^{2} - 1}}{{n^{2} + 2}}} \right)\frac{{2n^{2} + 1}}{{n^{2} + 2}} \equiv F_{3} \left( {\varepsilon ,n^{2} } \right)} \hfill \\ \end{array} ,} \right. $$
(E.3)

and \( Y^\circ \left( {m,g} \right) \) is a constant, independent by the solvent, which represents Stokes shift of the molecule m in gas phase. The Authors actually do not use the squared difference of the two vectors when expressing \( B\left( m \right) \) (as it should be), but the squared difference of their moduli, viz. \( \left( {\Delta \mu } \right)^{2} = \left( {\mu_{e} - \mu_{g} } \right)^{2} \): in other words, they implicitly assume that \( {\varvec{\upmu}}_{e} \) and \( {\varvec{\upmu}}_{g} \) must have (always) the same direction and versus. (Since this is not explicitly stated in the paper, their equation, that will be shown soon, has been often improperly evoked in the experimental Literature.)

They apply Eq. (E.2) to the special case of the so-called Reichardt’s betaine–30, m = D, which the Eq. (17.1) was built on (Chart 5.1, molecule A). Also at this point there arise some issues. First of all, they use (approximated) experimental values of the dipole moments which actually refer to another betaine (i.e. Chart 5.1, molecule C), viz. \( \mu_{e} = 6{\text{ D}} \) and \( \mu_{g} = 15{\text{ D}} \), and thus \( \Delta \mu_{\text{C}} = 9 {\text{D}} \), although this is not explicitly stated. In order to evaluate whether the two molecules have different values of electric dipole moments, we have calculated the values of \( \mu_{g} \) and \( \mu_{e} \) (in the Franck-Condon S 1) for the dyes A and C at PBE0 [6]/SNSD [219] level of theory, both in vacuo and in the reference solvent (i.e. 1,4-dioxane); in the latter, \( \Delta \mu_{\text{A}} \) = 6.120 D and \( \Delta \mu_{\text{C}} \) = 9.018 D. These QM calculations confirm that \( {\varvec{\upmu}}_{e} \) and \( {\varvec{\upmu}}_{g} \) are parallel and directed along the x-axis [259], and seems to suggest that actually the two dyes show a different dipole moment change when passing from S 0 to S 1. So, according to our calculations, \( \Delta \mu_{\text{A}} \) is smaller than \( \Delta \mu_{\text{C}} \). Therefore, by employing the improper value of \( \Delta \mu_{\text{C}} \) leads to an under-estimation of the electric dipole moment change of the system in study.

For the reference compound, they assume \( Y\left( {D,s} \right) \equiv \tilde{\nu }_{a}^{D} - {\text{constant}} \), since the dye is written not to fluoresce at all and hence one can only follow the shifts of absorption maximum with change in solvent polarity. This is actually another contradictory point. As explained in Sect. 4.1, Eq. (D.1) gives good results, but to be employed from the experimental point of view the knowledge of the emission data is required and thus the compound must be well-fluorescing. They put \( \tilde{\nu }_{f}^{D} \equiv {\text{constant}} \), since they consider \( \mu_{e}^{D} = \mu_{g}^{D} \), and then they feel confident of making the “safe” assumption that the solvatochromic shift of the florescence peak, if any, will be negligible compared to the shift of the absorption peak, i.e. \( \tilde{\nu }_{f}^{D} \left( s \right) = {\text{constant}} \) for any solvent s, but this is not necessarily true. (In particular in the case of the dye A, according to our PBE0 [6]/SNSD [219] calculations, the energy of the relaxed excited state is affected by the polarity of the medium; vide infra) Anyway, they write Eq. (D.2) for the dye m = D, as:

$$ \begin{array}{*{20}l} {Y\left( {D,s} \right) = B\left( D \right)X\left( s \right) + Y^{ \circ } \left( {D,g} \right)} \hfill \\ {\tilde{\nu }_{a}^{D,s} - {\text{constant}} = \frac{{2\left( {\Delta \mu_{D} } \right)^{2} }}{{hca_{D}^{3} }}X\left( s \right) + Y^{ \circ } \left( {D,g} \right)} \hfill \\ {\tilde{\nu }_{a}^{D,s} = \frac{{2\left( {\Delta \mu_{D} } \right)^{2} }}{{hca_{D}^{3} }}X\left( s \right) + Y^{{ \circ {\prime }}} ,} \hfill \\ \end{array} $$

where \( Y^{{ \circ {\prime }}} \equiv Y^{ \circ } \left( {D,g} \right) + {\text{constant}}\,{ = }\left[ {\tilde{\nu }_{a}^{D,g} - \tilde{\nu }_{f}^{D,g} } \right] + \tilde{\nu }_{f}^{D,s} \), and thus:

$$ X\left( s \right) = \frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }}\tilde{\nu }_{a}^{D,s} - Y^{{ \circ {\prime\prime}}} , $$
(E.4)

where \( Y^{{ \circ {\prime }}} \equiv \frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }}Y^{{ \circ {\prime\prime}}} \) [259]. (The Authors state that the nature of the function \( X\left( s \right) \) can be left unspecified, but the mathematical expression for the polarity function is well-defined once the theoretical framework is chosen.) From Eq. (E.1), we have:

$$ \tilde{\nu }_{a}^{D,s} = E_{T} \left( {30} \right)/2.8591 \times 10^{ - 3} = 349.7604E_{T} \left( {30} \right), $$
(E.5)

whereas from Eq. (D.9), we have:

$$ E_{T} \left( {30} \right) = 32.4E_{T}^{N} + 30.7, $$
(E.6)

so that Eq. (D.6) becomes:

$$ \tilde{\nu }_{a}^{D,s} = 349.7604\left( {32.4E_{T}^{N} + 30.7} \right) = 1 1 3 3 2. 2E_{T}^{N} + 1 0 7 3 7. 6. $$
(E.6’)

(Please, note that the Authors actually report slightly different values of the numerical constants, in particular: 11307.6 instead of 11332.2. In the algebraic derivation, we shall continue in using the value of the numerical constants that we have found, but during the numerical evaluations, we shall adopt their equation as is, vide infra.) Substituting into Eq. (E.4), we have:

$$ \begin{aligned} X\left( s \right) & = \frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }}\left( { 1 1 3 3 2. 2E_{T}^{N} + 1 0 7 3 7. 6} \right) - Y^{{ \circ {\prime }}} \\ & = 1 1 3 3 2. 2\frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }}E_{T}^{N} + Y^{{ \circ {\prime \prime }}} , \\ \end{aligned} $$
(E.7)

where \( Y^{{ \circ {\prime }}} \equiv \left( { 1 0 7 3 7. 6- Y^{{ \circ {\prime }}} } \right)\frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }} = \left\{ { 1 0 7 3 7. 6- \left[ {\left( {\tilde{\nu }_{a}^{D,g} - \tilde{\nu }_{f}^{D,g} } \right) + \tilde{\nu }_{f}^{D,s} } \right]} \right\}\frac{{hca_{D}^{3} }}{{2\left( {\Delta \mu_{D} } \right)^{2} }} \). Finally, substituting Eq. (D.7) into Eq. (D.2) instead of the correct \( X\left( s \right) \) function, we have:

$$ \tilde{\nu }_{a}^{m,s} - \tilde{\nu }_{f}^{m,s} = 1 1 3 3 2. 2\frac{{\left( {\Delta {\varvec{\upmu}}} \right)^{2} /a^{3} }}{{\left( {\Delta \mu_{D} } \right)^{2} /a_{D}^{3} }}E_{T}^{N} + Y*\left( {m,g} \right), $$
(E.8)

where \( Y*\left( {m,g} \right) \equiv Y^{ \circ } \left( {m,g} \right) + \frac{{2\left( {\Delta {\varvec{\upmu}}} \right)^{2} }}{{hca^{3} }}Y^{{ \circ {\prime \prime }}} . \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barone, V., Benassi, E., Carnimeo, I. (2015). Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_17

Download citation

Publish with us

Policies and ethics