Skip to main content

Assessment of Material Properties by Means of the Small Punch Test

  • Conference paper
  • First Online:
Recent Trends in Fracture and Damage Mechanics

Abstract

In recent years the small punch test (SPT) method has become an attractive alternative compared to traditional material testing procedures, especially in cases where only small amounts of material are available. We provide a literature review with focus on the history and application of the method. The main difficulty using the SPT is the fact that relevant material parameters cannot be as simply obtained by SPTs as by standard test methods, because of its non-uniform stress and deformation state. However, this can be achieved by comparing the experimental SPT results with those obtained by finite element computations of SPTs using advanced material models. Then the task is to determine the parameters of the material models using special optimization techniques. This paper presents SPT techniques for a broad temperature range. Work done on both ductile and brittle materials is presented. The analysis will focus on different advanced methods for determining parameters of state of the art material models for elastic-plastic, ductile damage and brittle failure behaviour. Results are provided for a weld line of a pressure gas pipe and brittle ceramic refractory materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abendroth M, Kuna M (2003) Determination of deformation and failure properties of ductile materials by means of the small punch test and neuronal networks. Comput Mater Sci 28:633–644. doi:10.1016/j.commatsci.2003.08.031

    Article  Google Scholar 

  2. Abendroth M, Kuna M (2004) Determination of ductile material properties by means of the small punch test and neural networks. Adv Eng Mater 6(7):536–540. doi:10.1002/adem.200400405

    Article  Google Scholar 

  3. Abendroth M, Kuna M (2006) Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 73(6):710–725. doi:10.1016/j.engfracmech.2005.10.007

    Article  Google Scholar 

  4. Alegre J, Cuesta I, Lorenzo M (2014) An extension of the Monkman-Grant model for the prediction of the creep rupture time using small punch tests. Exp Mech 54:1441–1451. doi:10.1007/s11340-014-9927-6

    Article  Google Scholar 

  5. Ardell AJ (1992) Mechanical behavior of ion-irradiated ordered intermetallic compounds. Mater Sci Eng A 152(1–2):212–226. doi:10.1016/0921-5093(92)90070-H

    Article  Google Scholar 

  6. Baik J, Kameda J, Buck O (1983) Small punch test evaluation of intergranular embrittlement of an alloy steel. Scr Metall 17:1443–1447. doi:10.1016/0036-9748(83)90373-3

    Article  Google Scholar 

  7. Baik J, Kameda J, Buck O (1986) Development of small punch tests for ductile-brittle transition temperature measurement of temper embrittled Ni-Cr steels. In: Corwin W, Lucas G (eds) The use of small-scale specimens for testing irradiated material, ASTM STP 888, Philadelphia, PA, pp 92–111

    Google Scholar 

  8. Beremin F, Pineau A, Mudry F, Devaux JC, D’Escatha Y, Ledermann P (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans A 14(11):2277–2287. doi:10.1007/BF02663302

    Article  Google Scholar 

  9. Besterci M, Dobeš F, Ballóková B, Sülleiová K, Kvačkaj T (2011) Observation of anisotropy of creep fracture using small punch test for Al-Al4C3 system produced by equal channel angular pressing. High Temp Mater Processes 30(3):205–210. doi:10.1515/htmp.2011.030

    Article  Google Scholar 

  10. Besterci M, Sülleiová K, Velgosová O (2012) Kinetics of mechanical alloying, mechanical properties of micro and nanostructural Al-C systems. High Temp Mater Processes 31(4–5):359–369. doi:10.1515/htmp-2012-0068

    Google Scholar 

  11. Blagoeva D, Hurst R (2009) Application of the CEN (European Committee for Standardization) small punch creep testing code of practice to a representative repair welded P91 pipe. Mater Sci Eng A 510–511: (219–223). doi:10.1016/j.msea.2008.05.058

    Google Scholar 

  12. Budzakoska E, Carr D, Stathers P, Li H, Harrison R, Hellier A, Yeung W (2007) Predicting the J integral fracture toughness of Al 6061 using the small punch test. Fatigue Fract Eng Mater Struct 30(9):796–807. doi:10.1111/j.1460-2695.2007.01153.x

    Article  Google Scholar 

  13. Bulloch J (1995) The small punch toughness test: some detailed fractographic information. Int J Press Vessels Pip 63:177–194. doi:10.1016/0308-0161(94)00050-S

    Article  Google Scholar 

  14. Bulloch J (2002) A review of the ESB small punch test data on various plant components with special emphasis on fractographic details. Eng Fail Anal 9(5):511–534. doi:10.1016/S1350-6307(01)00034-6

    Article  Google Scholar 

  15. Bulloch J (2004) A study concerning material fracture toughness and some small punch test data for low alloy steels. Eng Fail Anal 11(4):635–653. doi:10.1016/j.engfailanal.2003.05.020

    Article  Google Scholar 

  16. CEN (2006) Workshop agreement CWA 15627:2006, small punch test method for metallic materials. Technical report, Brussels, Belgium

    Google Scholar 

  17. Cheon J, Kim I (2000) Evaluation of thermal aging embrittlement in CF8 duplex stainless steel by small punch test. J Nucl Mater 278(1):96–103. doi:10.1016/S0022-3115(99)00213-5

    Article  Google Scholar 

  18. Chi S, Hong J, Kim I (1994) Evaluation of irradiation effects of 16 MeV proton-irradiated 12Cr-1MoV steel by small punch (SP) tests. Scr Metall Mater 30(12):1521–1525

    Article  Google Scholar 

  19. Cuesta I, Alegre J (2011) Determination of the fracture toughness by applying a structural integrity approach to pre-cracked small punch test specimens. Eng Fract Mech 78:289–300. doi:10.1016/j.engfracmech.2010.09.004

    Article  Google Scholar 

  20. Cuesta I, Alegre J (2012) Determination of plastic collapse load of pre-cracked small punch test specimens by means of response surface. Eng Fail Anal 23:1–9. doi:10.1016/j.engfailanal.2012.02.002

    Article  Google Scholar 

  21. Cuesta I, Alegre J, Lacalle R (2010) Determination of the Gurson-Tvergaard damage model parameters for simulating small punch tests. Fatigue Fract Eng Mater Struct 33(11):703–713. doi:10.1111/j.1460-2695.2010.01481.x

    Google Scholar 

  22. Dobeš F, Milička K (2002) On the Monkman-Grant relation for small punch test data. Mater Sci Eng A 336:245–248. doi:10.1016/S0921-5093(01)01975-X

    Article  Google Scholar 

  23. Dobeš F, Milička K (2008) Comparison of conventional and small punch creep tests of mechanically alloyed Al-C-O alloys. Mater Charact 59:961–964. doi:10.1016/j.matchar.2007.08.006

    Article  Google Scholar 

  24. Dobeš F, Milička K (2009) Application of creep small punch testing in assessment of creep lifetime. Mater Sci Eng A 510–511:440–443. doi:10.1016/j.msea.2008.04.087

    Google Scholar 

  25. Dymáček P, Milička K (2008) Small punch testing and its numerical simulations under constant deflection force conditions. Strength Mater 40(1):24–27. doi:10.1007/s11223-008-0007-y

    Google Scholar 

  26. Dymáček P, Milička K (2009) Creep small-punch testing and its numerical simulations. Mater Sci Eng A 510–511:444–449. doi:10.1016/j.msea.2008.06.053

    Article  Google Scholar 

  27. Dymáček P, Seitl S, Milička K, Dobeš F (2010) Influence of friction on stress and strain distributions in small punch creep test models. Key Eng Mater 417–418:561–564. doi:10.4028/www.scientific.net/KEM.417-418.561

    Google Scholar 

  28. Evans M, Wang D (2008) The small punch creep test: some results from a numerical model. J Mater Sci 43:1825–1835. doi:10.1007/s10853-007-2388-x

    Article  Google Scholar 

  29. Evans R, Evans M (2006) Numerical modelling of small disc creep test. Mater Sci Technol 22(10):1155–1162. doi:10.1179/174328406X118258

    Article  Google Scholar 

  30. Finarelli D, Roedig M, Carsughi F (2004) Small punch tests on austenitic and martensitic steels irradiated in a spallation environment with 530 MeV protons. J Nucl Mater 328:146–150. doi:10.1016/j.jnucmat.2004.04.320

    Article  Google Scholar 

  31. Fleury E, Ha J (1998) Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. Int J Press Vessels Pip 75(9):699–706. doi:10.1016/S0308-0161(98)00075-1

    Article  Google Scholar 

  32. Fleury E, Ha J (1998) Small punch tests to estimate the mechanical properties of steels for steam power plant: II. Fracture toughness. Int J Press Vessels Pip 75(9):707–713. doi:10.1016/S0308-0161(98)00075-1

    Article  Google Scholar 

  33. Foulds J, Viswanathan R (1996) Nondisruptive material sampling and mechanical testing. J Nondestr Eval 15(3–4):151–162. doi:10.1007/BF00732042

    Article  Google Scholar 

  34. Foulds J, Viswanathan R (2001) Determination of the toughness of in-service steam turbine disks using small punch testing. J Mater Eng Perform 10(5):614–619. doi:10.1361/105994901770344782

    Article  Google Scholar 

  35. Foulds J, Woytowitz P, Parnell T, Jewett C (1995) Fracture toughness by small punch testing. J Test Eval 23(1):3–10

    Article  Google Scholar 

  36. García T, Rodríguez C, Belzunce F, Suárez C (2014) Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloy Compd 582:708–717. doi:10.1016/j.jallcom.2013.08.009

    Google Scholar 

  37. Guan K, Hua L, Wang Q, Zou X, Song M (2011) Assessment of toughness in long term service CrMo low alloy steel by fracture toughness and small punch test. Nucl Eng Des 241:1407–1413. doi:10.1016/j.nucengdes.2011.01.031

    Article  Google Scholar 

  38. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile materials. J Eng Mater Technol 99:2–15. doi:10.1115/1.3443401

    Article  Google Scholar 

  39. Gurson A (1977) Porous rigid-plastic materials containing rigid inclusions yield function, plastic potential and void nucleation. Fracture 2:357–364

    Google Scholar 

  40. Hayhurst D (1972) Creep rupture under multi-axial states of stress. J Mech Phys Solids 20(6):381–390. doi:10.1016/0022-5096(72)90015-4

    Article  Google Scholar 

  41. Holmström S, Hähner P, Rippling S, Fischer B, Lapetite J, Bruchhausen M, Gupta M, Hurst R, Turba K, Gülçimen B (2014) Tensile, embrittlement and creep property determination with improved small punch testing equipment and assessment methods. In: Matocha K, Hurst R, Sun W (eds) Determination of mechanical properties of materials by small punch and other miniature testing techniques, pp 331–338

    Google Scholar 

  42. Hyde T, Stoyanov M, Sun W, Hyde C (2010) On the interpretation of results from small punch creep tests. J Strain Anal Eng Des 45(3):141–164. doi:10.1243/03093247JSA592

    Article  Google Scholar 

  43. Ju J, Kwon D (1998) Assessment of fracture characteristics from revised small punch test using pre-cracked specimen. Met Mater 4(4):742–746. doi:10.1007/BF03026391

    Article  Google Scholar 

  44. Kameda J, Mao X (1992) Small-punch and tem-disc testing techniques and their application to characterization of radiation damage. J Mater Sci 27(4):983–989. doi:10.1007/BF01197651

    Article  Google Scholar 

  45. Kato T, Kohno Komazaki Y S, Tanigawa H, Kohyama A (2009) High-temperature strength analysis of welded joint of RAFs by small punch test. J Nucl Mater 386–388:520–524. doi:10.1016/j.jnucmat.2008.12.153

    Article  Google Scholar 

  46. Kim J, Chung T, Lim J, Chung S (1991) The evaluation for in-service material degradation of superheat tubes of fossil boiler. Key Eng Mater 51–52:253–258

    Article  Google Scholar 

  47. Kim MC, Oh Y, Lee B (2005) Evaluation of ductile–brittle transition temperature before and after neutron irradiation for RPV steels using small punch tests. Nucl Eng Des 235:1799–1805

    Article  Google Scholar 

  48. Kurtz S, Foulds J, Jewett C, Srivastav S, Edidin A (1997) Validation of a small punch testing technique to characterize the mechanical behaviour of ultra-high-molecular-weight polyethylene. Biomaterials 18(24):1659–1663. doi:10.1016/S0142-9612(97)00124-5

    Article  Google Scholar 

  49. Li H, Chen F, Ardell A (1991) A simple, versatile miniaturized disk-bend test apparatus for quantitative yield-stress measurements. Metall Trans A 22(9):2061–2068. doi:10.1007/BF02669873

    Article  Google Scholar 

  50. Li Y, Šturm R (2006) Small Punch test for weld heat affected zones. Mater High Temp 23(3–4):225–232. doi:10.1179/mht.2006.019

    Article  Google Scholar 

  51. Linse T (2013) Quantifizierung des spröd-duktilen Versagensverhaltens von Reaktorstählen mit Hilfe des Small-Punch-Tests und mikromechanischer Schädigungsmodelle. Ph.D. thesis, TU Bergakademie Freiberg, Berichte des Institutes für Mechanik und Fluiddynamik, Heft 9

    Google Scholar 

  52. Linse T, Kuna M, Schuhknecht J, Viehrig HW (2008) Application of the small punch test to irradiated reactor vessel steels in the brittle-ductile transition region. J ASTM Int 5(5)

    Google Scholar 

  53. Linse T, Kuna M, Schuhknecht J, Viehrig HW (2008) Application of the small-punch test to irradiated reactor vessel steels in the brittle-ductile transition region. J ASTM Int 5(4):1–14. doi:10.1520/JAI101008

    Article  Google Scholar 

  54. Linse T, Kuna M, Schuhknecht J, Viehrig HW (2008) Usage of the smallpunch-test for the characterisation of reactor vessel steels in the brittle-ductile transition region. Eng Fract Mech 75(11):3520–3533. doi:10.1016/j.engfracmech.2007.03.047

    Article  Google Scholar 

  55. Linse T, Hütter G, Kuna M (2012) Simulation of crack propagation using a gradient-enriched ductile damage model based on dilatational strain. Eng Fract Mech 95:13–28. doi:10.1016/j.engfracmech.2012.07.004

    Article  Google Scholar 

  56. Linse T, Kuna M, Viehrig HW (2014) Quantification of brittle-ductile failure behavior of ferritic reactor pressure vessel steels using the small-punch-test and micromechanical damage models. Mater Sci Eng A 614:136–147

    Article  Google Scholar 

  57. Manahan M (1983) A new postirradiation mechanical behavior test—the miniaturized disk bend test. Nucl Technol 63:295–315

    Google Scholar 

  58. Manahan M (1986) Determining mechanical behavior of solid materials using miniature specimens. US Patent Number 4,567,774

    Google Scholar 

  59. Manahan M, Argon A, Harling O (1981) The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 103:1545–1550. doi:10.1016/0022-3115(82)90820-0

    Article  Google Scholar 

  60. Mao X, Saito M, Takahashi H (1991) Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC. Scr Metall 25(11):2481–2485

    Article  Google Scholar 

  61. Matsumoto Y, Morinagat M, Furui M (1997) Multiple deformation effect on the ductility of chromium. Scr Mater 38(2):321–327

    Article  Google Scholar 

  62. Matsushita T, Saucedo M, Joo Y, Shoji T (1991) DBTT estimation of ferritic low alloy steels in service plant by means of small punch test. Key Eng Mater 51–52:259–264. doi:10.4028/www.scientific.net/KEM.51-52.259

    Article  Google Scholar 

  63. Milička K, Dobeš F (2005) Relation between uniaxial and equi-biaxial creep and creep fracture behaviour in P91 steel. Mater Sci Forum 482:407–410

    Article  Google Scholar 

  64. Milička K, Dobeš F (2006) Small punch testing of P91 steel. Int J Press Vessels Pip 83:625–634. doi:10.1016/j.ijpvp.2006.07.009

    Article  Google Scholar 

  65. Misawa T, Adachi T, Saito M, Hamaguchi Y (1987) Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels. J Nucl Mater 150(2):194–202. doi:10.1016/0022-3115(87)90075-4

    Article  Google Scholar 

  66. Misawa T, Nagata S, Aoki N (1989) Fracture toughness evaluation of fusion reactor structural steels at low temperatures by small punch tests. J Nucl Mater 169:225–232. doi:10.1016/0022-3115(89)90538-2

    Article  Google Scholar 

  67. Mühlich U, Brocks W, Siegmund T (1998) A user material subroutine of the Gurson-Tvergaard-Needleman model of porous metal plasticity for rate and temperature dependent hardening. Technical Note GKSS/WMG/98/1, GKSSForschungszentrum Geesthacht

    Google Scholar 

  68. Norris S, Parker J (1996) Deformation processes during disc bend loading. Mater Sci Technol 12(2):163–170. doi:10.1179/mst.1996.12.2.163

    Article  Google Scholar 

  69. Rasche S (2013) Bestimmung von Materialparametern der elastischplastischen Verformung und des spröden Versagens aus Small-Punch-Kleinstproben. Ph.D. thesis, TU Bergakademie Freiberg

    Google Scholar 

  70. Rasche S, Bermejo R, Kuna M, Danzer R (2010) Determination of mechanical properties of brittle materials by using the small punch test and the ball on three balls test. In: Proceedings 18th European conference on fracture, Dresden

    Google Scholar 

  71. Reusch F, Svendsen B, Klingbeil D (2003) A non-local extension of gursonbased ductile damage modeling. Comput Mater Sci 26:219–229. doi:10.1016/S0927-0256(02)00402-0

    Article  Google Scholar 

  72. Rice J, Johnson M (1970) The role of large crack tip geometry changes in plane strain fracture. In: Kanninen M (ed) Elastic-plastic behavior in solids. McGraw Hill, New York, pp 120–168

    Google Scholar 

  73. Saito M, Hashida T, Takahashi H (1991) Small punch test for ceramic composites at very high temperature. Key Eng Mater 51–52:477–482. doi:10.4028/www.scientific.net/KEM.51-52.477

    Article  Google Scholar 

  74. Saucedo-Muñoz M, Liu S, Hashida T, Takahashi H, Nakajima H (2001) Correlationship between JIC and equivalent fracture strain determined by small punch tests in JN1, JJ1 and JK2 austenitic stainless steels. Cryogenics 41:713–719

    Article  Google Scholar 

  75. Shekhter A, Croker A, Hellier A, Moss C, Ringer S (2000) Towards the correlation of fracture toughness in an ex-service power generating rotor. Int J Press Vessels Pip 77(2–3):113–116. doi:10.1016/S0308-0161(99)00091-5

    Article  Google Scholar 

  76. Shekhter A, Kim S, Carr D, Croker A, Ringer S (2002) Assessment of temper embrittlement in an ex-service 1Cr–1Mo–0.25 V power generating rotor by Charpy V-Notch testing, KIc fracture toughness and small punch test. Int J Press Vessels Pip 79(8–10):611–615. doi:10.1016/S0308-0161(02)00087-X

    Article  Google Scholar 

  77. Shindo Y, Yamaguchi Y, Horiguchi K (2004) Small punch testing for determining the cryogenic fracture properties of 304 and 316 austenitic stainless steels in a high magnetic field. Cryogenics 44(11):789–792. doi:10.1016/j.cryogenics.2004.04.008

    Article  Google Scholar 

  78. Springmann M, Kuna M (2002) Identification of material parameters of the Rousselier model by non-linear optimization. Comput Mater Sci 26:202–209. doi:10.1016/S0927-0256(02)00400-7

    Article  Google Scholar 

  79. Turba K, Gülçimen B, Li Y, Blagoeva D, Hähner P, Hurst R (2011) Introduction of a new notched specimen geometry to determine fracture properties by small punch testing. Eng Fract Mech 78(16):2826–2833. doi:10.1016/j.engfracmech.2011.08.014

    Article  Google Scholar 

  80. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract Mech 17(4):389–407. doi:10.1007/BF00036191

    Article  Google Scholar 

  81. Tvergaard V, Needleman A (1995) Effects of nonlocal damage in porous plastic solids. Int J Solids Struct 32(8–9):1063–1077. doi:10.1016/0020-7683(94)00185-Y

    Article  MATH  Google Scholar 

  82. Ule B, Šuštar T, Dobeš F, Milička K, Bicego V, Maile Tettamanti K S, Schwarzkopf C, Whelan M, Kozlowski R, Klaput J (1999) Small punch test method assessment for the determination of the residual creep life of service exposed components: outcomes from an interlaboratory exercise. Nucl Eng Des 192:1–11

    Article  Google Scholar 

  83. Wakai E, Ohtsuka H, Matsukawa S, Furuya K, Tanigawa H, Oka K, Ohnuki S, Yamamoto T, Takada F, Jitsukawa S (2006) Mechanical properties of small size specimens of F82H steel. Fusion Eng Des 81(8–14):1077–1084. doi:10.1016/j.fusengdes.2005.08.072

    Article  Google Scholar 

  84. Wang Z, Shi H, Lu J, Shi P, Ma X (2008) Small punch testing for assessing the fracture properties of the reactor vessel steel with different thicknesses. Nucl Eng Des 238(12):3186–3193. doi:10.1016/j.nucengdes.2008.07.013

    Article  Google Scholar 

  85. Yang S, Yang Z, Ling X (2014) Fracture toughness estimation of ductile materials using a modified energy method of the small punch test. J Mater Res 29(15):1675–1680. doi:10.1557/jmr.2014.205

    Article  Google Scholar 

  86. Yang Z, Wang Z (2003) Relationship between strain and central deflection in small punch creep specimens. Int J Press Vessels Pip 80(6):397–404. doi:10.1016/S0308-0161(03)00069-3

    Article  Google Scholar 

  87. Zhang J, Ardell AJ (1991) Measurement of the fracture toughness of CVDgrown ZnS using a miniaturized disk-bend test. J Mater Res 6(9):1950–1957. doi:10.1557/JMR.1991.1950

    Article  Google Scholar 

  88. Zhang Z (1995) Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models. Comput Methods Appl Mech Eng 121(1–4):29–44. doi:10.1016/0045-7825(94)00707-T

    Article  MATH  Google Scholar 

  89. Zhang Z (1995) On the accuracies of numerical integration algorithms for gurson-based pressure-dependent elastoplastic constitutive models. Comput Methods Appl Mech Eng 121(1–4):15–28. doi:10.1016/0045-7825(94)00706-S

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the federal ministry of Saxony within the ADDE project as well as the support of the German Research Foundation (DFG) for the collaborative research center SFB 920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Abendroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abendroth, M., Soltysiak, S. (2016). Assessment of Material Properties by Means of the Small Punch Test. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics