Skip to main content

Part of the book series: Geobotany Studies ((GEOBOT))

Abstract

Some original results are presented from almost a decade of intensive fieldwork throughout the vast California ultramafic (serpentine) area. Bioclimatic and biogeographic data were used to gain a general understanding of the specialized vegetation developed on these peculiar sites, and specifically the potential natural vegetation (considered as a xero-edaphic climax). A complete geobotanical overview is presented for one of the most typical ultramafic vegetation types, the ‘serpentine chaparrals’, as they are called, classically, in the literature.

Following standardized phytosociological methods, we assembled over a hundred selected relevés and studied them by numerical analyses. These studies, plus bioclimatic and biogeographical considerations, permitted recognition of five vegetation types, defined as ‘ultramafic chaparrals’ and considered as xero-edaphic climax vegetation. Four of these five types are proposed as new phytosociological associations. For each vegetation type we present its complete characterization, dynamics and distribution, its original phytosociological table, and the obligatory type relevé, in strict compliance with the current International Code of Phytosociological Nomenclature. All these phytosociological associations recognized are included in the alliance Quercion duratae (Heteromelo arbutifoliae-Quercetea agrifoliae class). The individual associations are Ceanotho jepsonii-Quercetum duratae, Ceanotho albiflori-Quercetum duratae, Arctostaphylo glaucae-Quercetum duratae, Arctostaphylo viscidae-Quercetum duratae, and Hesperoyucco whipplei-Quercetum duratae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of Western North America: geology, soils, and vegetation. Oxford University Press, New York, NY, 512 pp

    Google Scholar 

  • Anonymous (1959) Geologic map of California. Scale 1:2,500,000. U.S. Geological Survey. California Division of Mines and Geology. Sacramento (California)

    Google Scholar 

  • Baker AJM, Proctor J, Reeves RD (eds) (1992) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, 509 pp

    Google Scholar 

  • Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH (eds) (2012) The Jepson manual: vascular plants of California, 2nd edn. University of California Press, Berkeley, CA, 1568 pp

    Google Scholar 

  • Barbour MG, Keeler-Wolf T, Schoenherr AA (eds) (2007) Terrestrial vegetation of California, 3rd edn. University of California Press, Berkeley, CA, 712 pp

    Google Scholar 

  • Coleman RG, Kruckeberg AR (1999) Geology and plant life of the Klamath-Siskiyou mountain system. Nat Areas J 19:320–340

    Google Scholar 

  • Ghaderian SM, Fattahi H, Khosravi AR, Noghreian M (2009) Geobotany and biogeochemistry of soils of Neyriz, Iran. Northeastern Nat 16(5):8–20, special issue

    Article  Google Scholar 

  • Harrison SP (1997) How natural habitats patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78:1898–1906

    Article  Google Scholar 

  • Harrison SP (1999) Local and regional diversity in a patchy landscape: native, alien and endemic herbs on serpentine soils. Ecology 80:70–80

    Article  Google Scholar 

  • Harrison SP, Rajakaruna N (eds) (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, CA, 464 pp

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Jaffré T, Latham M, Schmid M (1987) Aspects de l’influence de l’extraction du mineral de nickel sur la végétation et les sols en Nouvell Calédonie. Cahiers ORSTOM, ser Biologique 12:307–321

    Google Scholar 

  • Keeley JE, Davis FW (2007) Chaparral. In: Barbour MG et al (eds) Terrestrial vegetation of California, 3rd edn. University of California Press, Berkeley, CA, pp 339–366, 712 pp

    Chapter  Google Scholar 

  • Kruckeberg AR (1951) Intraspecific variability in response of certain native plant species to serpentine soil. Am J Bot 38:408–419

    Article  Google Scholar 

  • Kruckeberg AR (1964) Ferns associated withultramafic rocks in the Pacific Northwest. Am Fern J 54:113–126

    Article  Google Scholar 

  • Kruckeberg AR (1969) Plant life on serpentinite and other ferromagnesian rocks in northwestern North America. Syesis 2:15–114

    Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology soils, and management problems, vol 78. University of California Publications in Botany. University of California Press, Berkeley, CA, 180 pp

    Google Scholar 

  • Kruckeberg AR (1991) An essay: geoedaphics and island biogeography for vascular plants. Aliso 13:225–238

    Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life. The effects of landforms and rock types on plants. University of Washington Press, Seattle, WA, 362 pp

    Google Scholar 

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of rarity in higher plants. Annu Rev Ecol Systemat 16:447–479

    Article  Google Scholar 

  • McCune B, Mefford JB (1999) PC-ORD. Multivariate analysis of ecological data. Version 5.0. MjM Software, Gleneden Beach, OR

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York, NY

    Google Scholar 

  • Rajakaruna N, Boyd RS (2009) Soil and biota of serpentine: a world view. Proceedings of 6th international conference on serpentine ecology. Northeastern Nat 16(special issue 5). Steuben. 440 pp

    Google Scholar 

  • Reeves RD, Adiguzel N (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28:147–153

    Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  Google Scholar 

  • Reeves RD, Kruckeberg AR, Adiguzel N, Kramer U (2000) Studies on the flora of serpentine and other metalliferous areas in western Turkey. S Afr J Sci 97:513–517

    Google Scholar 

  • Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America, I (Compendio sintaxonómico de la vegetación natural potencial de Norteamérica, I). Itinera Geobotanica 10:5–148, map and appendix

    Google Scholar 

  • Rivas-Martínez S et al. (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del mapa de vegetación de España. Itinera Geobot 17:5–436

    Google Scholar 

  • Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American Boreal and Western Temperate Forest Vegetation. Itinera Geobotanica 12:5–316, map

    Google Scholar 

  • Rivas-Martínez S, Rivas Sáenz S, Penas A (2011) Worldwide bioclimatic classification system. Global Geobot 1(1):1–638

    Google Scholar 

  • Rodríguez-Rojo MP, Sánchez-Mata D, Rivas-Martínez S, Barbour MG (2001a) Syntaxonomical approach for classification of the Californian serpentine annual grasslands. Lazaroa 22:83–94

    Google Scholar 

  • Rodríguez-Rojo MP, Sánchez-Mata D, Gavilán García RG, Rivas-Martínez S, Barbour MG (2001b) Typology and ecology of the Californian serpentine annual grasslands. J Veg Sci 12(5):687–698

    Article  Google Scholar 

  • Safford HD, Viers JH, Harrison SP (2005) Serpentine endemis in the California flora: a database of serpentine affinity. Madroño 52:222–257

    Article  Google Scholar 

  • Sánchez-Mata D (2007) Ultramafic vegetation. Chapter 3: California soils and examples of ultramafic vegetation (A. T. O’Geen, R. A. Dahlgren, and D. Sánchez-Mata). In: Barbour MG et al (eds) Terrestrial vegetation of California, 3rd edn, pp 93–(71)–106. University of California Press, Berkeley, CA, 712 pp

    Google Scholar 

  • Sánchez-Mata D, de la Fuente V, Rodríguez-Rojo MP (2002a) Estudios sobre hiperacumulación de níquel en la flora serpentinícola de California. Schironia 1:31–34

    Google Scholar 

  • Sánchez-Mata D, Rivas-Martínez S, Rodríguez-Rojo MP, Barbour MG (2002b) Vegetación serpentinícola de California: biodiversidad y fitosociología. Schironia 1:35–37

    Google Scholar 

  • Sánchez-Mata D, Rodríguez-Rojo MP, Barbour MG (2004) California ultramafic vegetation: biodiversity and phytosociological survey. In: Boyd RS et al (eds) Ultramafic rocks: their soils, vegetation and fauna, pp 77–181. Proceedings of the fourth international conference on serpentine ecology. Science Reviews, St. Albans, 347 pp

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination. Version 4.5. Microcomputer Power, Ithaca, NY

    Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  • Tzonev R, Pavlova D, Sánchez-Mata D, de la Fuente V (2013) Contribution to the knowledge of Bulgarian serpentine grasslands and their relationships with Balkan serpentine syntaxa. Plant Biosyst 147(4):955–961

    Article  Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Weber HE, Moravec J, Theurillat J-P (2000) International code of phytosociological nomenclature. J Veg Sci 11:739–768

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities, 2nd edn. Dr. W. Junk, The Hague, pp 287–399

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the “Del Amo” scholarship program of the Complutense University in Madrid (Spain ) for their ample support to Daniel Sánchez-Mata for the field research in California in association with the University of California at Davis in recent years. We are also grateful to Professor Michael Barbour (Plant Sciences Department), Ellen Dean (DAV Herbaria Curator, Center for Plant Diversity) and Jean Shepard (DAV Herbaria Technician, Center for Plant Diversity), all from the University of California at Davis. Thanks also to various US Federal Agencies such as the Forest Service, Bureau of Land Management, and US Geological Survey for their technical and field help and support; to the California Department of Fish and Wildlife, and the California Native Plant Society for their help in this research. Finally, to Pru Brooke-Turner who revised the English version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sánchez-Mata .

Editor information

Editors and Affiliations

Appendices

Taxonomic Appendix

  • Abies critchfieldii (Lanner) Rivas-Martínez & Sánchez-Mata in Sánchez-Mata, Ber. d. Reinh.-Tüxen-Ges. 24:147. 2012.

  • Abies shastensis (Lemmon) Lemmon, Gard. & Forest 10:184. 1897.

  • Ceanothus jepsonii subsp. albiflorus (J.T. Howell) comb. nova. Bas.: Ceanothus jepsonii var. albiflours J.T. Howell, Leafl. W. Bot. 3:231. 1943.

  • Pinus austrina (R. J. Mastrog. & J.D. Mastrog.) Rivas-Martínez & Sánchez-Mata in Sánchez-Mata, Ber. d. Reinh.-Tüxen-Ges. 24:147. 2012.

  • Pinus ponderosa subsp. pacifica (J. R. Haller & N. J. Vivrette) Rivas-Martínez & Sánchez-Mata in Sánchez-Mata, Ber. d. Reinh.-Tüxen-Ges. 24:147. 2012.

  • Pteridium aquilinum subsp. pubescens (Underw.) J. A. Thomson, Mickel & Mehltr., Bot. J. Linn. Soc. 157(1):14. 2008.

  • Quercus wislizeni subsp. frutescens (Engelm.) A. E. Murray, Kalmia 13:28. 1983.

  • Quercus breweri Engelm. in S. Watson, Bot. Calif. 2:96. 1880.

Phytosociological Appendix

  • Heteromelo arbutifoliae-Quercetea agrifoliae Rivas-Martínez 1997

    • + Adenostomo fasciculati-Rhamnetalia croceae Rivas-Martínez 1997

      • * Quercion duratae Sánchez-Mata, Barbour & Rodríguez-Rojo [in Rivas-Martínez] 1997

        • Ceanotho jepsonii-Quercetum duratae ass. nova hoc loco

        • Ceanotho albiflori-Quercetum duratae Sánchez-Mata, Barbour & Rodríguez-Rojo [in Rivas-Martínez] 1997

        • Arctostaphylo glaucae-Quercetum duratae ass. nova hoc loco

        • Arctostaphylo viscidae-Quercetum duratae ass. nova hoc loco

        • Hesperoyucco whipplei-Quercetum duratae ass. nova hoc loco

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez-Mata, D., Rodríguez-Rojo, M.P. (2016). Mediterranean Ultramafic (Serpentine) Chaparrals of California (USA): A Geobotanical Overview. In: Box, E. (eds) Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Geobotany Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21452-8_11

Download citation

Publish with us

Policies and ethics