Skip to main content
  • 1876 Accesses

Abstract

Since its initial inception in the early 1980s, the widespread use of ultrasound for imaging fetal cardiovascular anatomy and physiology has resulted in major improvements in our ability to treat fetal arrhythmia and diagnose congenital heart disease (CHD) prenatally. The result has been a reduction in fetal deaths attributable to supraventricular tachycardia and complete heart block, improvements in perinatal outcomes in pregnancies affected by CHD, and the option of termination of pregnancy in the setting of serious cardiac and associated congenital malformations [10]. In recent years, we have learned how the natural history of severe forms of CHD may be modified with minimally invasive in utero surgical procedures, a development that is entirely attributable to the development of fetal echocardiography. Doppler ultrasound has also improved the detection and management of intrauterine growth restriction (IUGR) through the identification of the changes in fetal cerebral, peripheral, and placental vascular resistances that occur in response to acute fetal hypoxia [7, 56]. However, while Doppler aids in the detection of fetal hypoxia by identifying fetal circulatory adaptations to placental insufficiency, one drawback of the modality is that it does not provide any direct information about fetal oxygenation. Furthermore, animal studies suggest that chronic fetal hypoxia is associated with a reduction in fetal oxygen consumption (VO2) and normalization of blood flow distribution, resulting in potentially falsely reassuring findings on Doppler ultrasound [34, 39, 42]. By contrast, MRI offers the potential to directly quantify the oxygen content of fetal blood and may therefore provide more sensitive measures of chronic placental insufficiency [60, 61]. Fetal cardiovascular MRI may also be helpful as an adjunct to conventional ultrasound assessment in the setting of CHD. The abnormal cardiac connections and obstructions of flow that characterize CHD have long been suspected of disrupting oxygen transport across the fetal circulation, and MRI has provided a new way to examine the relationships between fetal hemodynamics and organ growth and development [52].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya G, Sitras V (2009) Oxygen uptake of the human fetus at term. Acta Obstet Gynecol Scand 88:104–109

    Article  PubMed  Google Scholar 

  2. Al Nafisi B, van Amerom J, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo S-J et al (2013) Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case–control study. J Cardiovasc Magn Reson 15:65

    Article  PubMed Central  PubMed  Google Scholar 

  3. Baker P, Johnson I, Gowland P (1994) Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet 343:644–645

    Article  CAS  PubMed  Google Scholar 

  4. Beca J, Gunn J, Coleman L, Hope A, Reed P, Hunt R et al (2013) New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 127:971–979

    Article  PubMed  Google Scholar 

  5. Borik S, Macgowan CK, Seed M (2015) Maternal hyperoxygenation and foetal cardiac MRI in the assessment of the borderline left ventricle. Cardiol Young 25:1214–1217

    Google Scholar 

  6. Chaturvedi R, Ryan G, Seed M, van Arsdell G, Jaeggi E (2013) Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. Int J Cardiol 168(3):2029–2036

    Article  PubMed  Google Scholar 

  7. Cohn H, Sacks E, Heymann M, Rudolph A (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120:817–824

    Article  CAS  PubMed  Google Scholar 

  8. Dimitropoulos A, McQuillen P, Sethi V, Moosa A, Chau V, Xu D et al (2013) Brain injury and development in critical congenital heart disease. Neurology 81:241–248

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dong S, Zhu M, Li F (2013) Preliminary experience with cardiovascular magnetic resonance in evaluation of fetal cardiovascular anomalies. J Cardiovasc Magn Reson 15:40

    Article  PubMed Central  PubMed  Google Scholar 

  10. Donofrio M, Moon-Grady A, Hornberger L, Copel J, Sklansky M, Abuhamad A et al (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129:2183–2242

    Article  PubMed  Google Scholar 

  11. Gill R (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 7:625–642

    Article  Google Scholar 

  12. Giri S, Chung Y-C, Merchant A, Mihai G, Rajagopalan S, Raman S et al (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56

    Article  PubMed Central  PubMed  Google Scholar 

  13. Giri S, Shah S, Xue H, Pennell M, Guehring J, Zuelsdorff S et al (2012) Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction. Magn Reson Med 68(5):1570–1578

    Article  PubMed Central  PubMed  Google Scholar 

  14. Goff D, McKay E, Davey B, Thacker D, Khalek N, Miesnik S et al (2011) Placental abnormalities in fetal congenital heart disease. Circulation 124, A11260

    Google Scholar 

  15. Grgac K, van Zijl P, Qin Q (2013) Hematocrit and oxygenation dependence of blood 1H2O T1 at 7 tesla. Magn Reson Med 70:1153–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Heymann M (1999) Control of the pulmonary circulation in the fetus and during the transition period to air breathing. Eur J Obstet Gynecol Reprod Biol 84:127–132

    Article  CAS  PubMed  Google Scholar 

  17. Hoffman M, Visser F, Van Rossum A, Vink Q, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33:778–784

    Article  Google Scholar 

  18. Jansz M, Seed M, van Amerom J (2010) Metric optimized gating for fetal cardiac MRI. Magn Reson Med 64:1304–1314

    Article  PubMed  Google Scholar 

  19. Kenny J, Plappert T, Doubilet P, Saltzman D, Cartier M, Zollars L et al (1987) Changes in intra-cardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 60:338–342

    Google Scholar 

  20. Kiserud T, Ebbing C, Kessler J, Rasmussen S (2006) Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet Gynecol 28:126–136

    Article  CAS  PubMed  Google Scholar 

  21. Lawrence D. Longo (2011) Respiratory Gas Exchange in the Placenta. The Respiratory System, Gas Exchange: Supplement 13: Handbook of Physiology, First published in print 1987. Compr Physiol, doi: 10.1002/cphy.cp030418, pp 351–401

  22. Lee T, Stainsby J, Hong J, Han E, Brittain J, Wright G (2003) Blood relaxation properties at 3T – effects of blood oxygen saturation. Proc Intl Soc Mag Reson Med 11, pp 131

    Google Scholar 

  23. Licht D, Shera D, Clancy R, Wernovsky G, Montenegro L, Nicholson S et al (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–536

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    Article  PubMed  Google Scholar 

  25. Luz A, Meiboom S (1963) Nuclear magnetic resonance study of protolysis of trimethylammonium ion in aqueous solution: order of the reaction with respect to the solvent. J Chem Phys 39:366–370

    Article  CAS  Google Scholar 

  26. Macgowan C (n.d.) Metric optimized gating. Retrieved from http://metricoptimizedgating.github.io/MOG-Public/

  27. Macgowan C, Sled J, Seed M (n.d.) Fetal MRI research. Retrieved from http://www.sickkids.ca/Research/fetalMRI/index.html

  28. Madathil S, Sun L, Saini B, Yoo S-J, Jaeggi E, Grosse-Wortmann L et al (2015) MRI reveals increased superior vena caval blood flow in human fetuses with congenital heart disease, abnormal placental pathology and neonatal brain white matter changes. J Cardiovasc Magn Reson 17(S1):O92

    Article  PubMed Central  Google Scholar 

  29. Mielke G, Benda N (2001) Cardiac output and central distribution of blood flow in the human fetus. Circulation 103:1662–1668

    Article  CAS  PubMed  Google Scholar 

  30. Miller S, McQuillen P, Hamrick S, Duan X, Glidden D, Charlton N et al (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357:1928–1938

    Article  CAS  PubMed  Google Scholar 

  31. Muthusami P, Madathil S, Blaser S, Jaeggi E, Grosse-Wortmann L, Yoo S-J et al (2015) Reduced fetal cerebral oxygen consumption is associated with abnormal white matter in newborns with congenital heart disease. J Cardiovasc Magn Reson 17(S1):P201

    Article  PubMed Central  Google Scholar 

  32. Nicolaides K, Clewell W, Mibashan R, Soothill P, Rodeck C, Campbell S (1988) Fetal haemoglobin measurement in the assessment of red cell isoimmunisation. Lancet 331:1073–1075

    Article  Google Scholar 

  33. Nield L, Xiu-Ling L, Valsangiacomo E (2005) In vivo MRI measurement of blood oxygen saturation in children with congenital heart disease. Pediatr Radiol 35:179–185

    Article  PubMed  Google Scholar 

  34. Pearce W (2006) Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol (1985) 100:731–738

    Article  CAS  Google Scholar 

  35. Porayette P, Macgowan C, Madathil S, Jaeggi E, Grosse-Wortmann L, Yoo S-J et al (2015) Preliminary fetal hemodynamic patterns in late gestation fetuses with common forms of cyanotic congenital heart disease by phase contrast MRI and T2 mapping. International Society of Magnetic Resonance in Medicine, Toronto, p P6573. Epub ahead of print

    Google Scholar 

  36. Porayette P, Sun L, Jaeggi E, Grosse-Wortmann L, Yoo S-J, Hickey E et al (2015) MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. J Cardiovasc Magn Reson 17(S1):O55

    Article  PubMed Central  Google Scholar 

  37. Porayette P, van Amerom JF, Yoo SJ, Jaeggi E, Macgowan CK, Seed M (2015) MRI shows limited mixing between systemic and pulmonary circulations in fetal transposition of the great arteries: a potential cause of in utero pulmonary vascular disease. Cardiol Young 25:737–744

    Google Scholar 

  38. Portnoy S, Seed M, Zhu J, Sled J, Macgowan C (2015) Combined T1 and T2 measurement for non-invasive evaluation of blood oxygen saturation and hematocrit. International Society of Magnetic Resonance in Medicine, Toronto

    Google Scholar 

  39. Poudel R, McMillen I, Dunn S, Zhang S, Morrison J (2014) Impact of chronic hypoxemia on blood flow to the brain, heart and adrenal gland in the late gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol. doi:10.1152/ajpregu.00036.2014

    PubMed  Google Scholar 

  40. Prsa M, Sun L, van Amerom J, Yoo S-J, Grosse-Wortmann L, Jaeggi E et al (2014) Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging 7:663–670

    Article  PubMed  Google Scholar 

  41. Rasanen J, Wood D, Debbs R, Cohen J, Weiner S, Huhta J (1998) Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy – a randomized study. Circulation 97:257–262

    Article  CAS  PubMed  Google Scholar 

  42. Richardson B, Bocking A (1998) Metabolic and circulatory adaptations to chronic hypoxia in the fetus. Comp Biochem Physiol 119A(3):717–723

    Article  CAS  Google Scholar 

  43. Roy C, Seed M, van Amerom J, Al Nafisi B, Grosse-Wortmann L, Yoo S et al (2013) Dynamic imaging of the fetal heart using metric optimized gating. Magn Reson Med 70(6):1598–607

    Article  PubMed  Google Scholar 

  44. Rudolph A (2001) Congenital diseases of the heart: clinical-physiological considerations, 3rd edn. Wiley Blackwell, Chichester

    Google Scholar 

  45. Saleem S (2008) Feasibility of MRI of the fetal heart with balanced steady-state free precession sequence along fetal body and cardiac planes. AJR Am J Roentgenol 191:1208–1215

    Article  PubMed  Google Scholar 

  46. Seed M (2015) Advanced fetal cardiac MR imaging. In: Kline-Fath B, Bahado-Singh R, Bulas D (eds) Fundamental and advanced fetal imaging: ultrasound and MRI. Wolters Kluwer, Philadelphia

    Google Scholar 

  47. Seed M, Bradley T, Bourgeois J, Jaeggi E, Yoo S (2009) Antenatal MR imaging of pulmonary lymphagiectasia secondary to hypoplastic left heart syndrome. Pediatr Radiol 39:747–749

    Article  PubMed  Google Scholar 

  48. Seed M, van Amerom J, Yoo S, Al Nafisi B, Grosse-Wortmann L, Jaeggi E et al (2012) Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson 14:79

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sorensen A, Peters D, Simonsen C, Pederson M, Stausbol-Gron B, Christiansen O et al (2013) Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat Diagn 33:141–145

    Article  CAS  PubMed  Google Scholar 

  50. St John Sutton M, Groves A, MacNeill A (1994) Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br Heart J 71:232–237

    Article  Google Scholar 

  51. Stainsby J, Wright G (2005) Partial volume effects on vascular T2 measurements. Magn Reson Med 40(3):494–499

    Article  Google Scholar 

  52. Sun L, Thakur V, Jaeggi E, Kingdom J, Windrim R, Sled JG, Macgowan C, Seed M (2014) Low pulmonary blood flow demonstrated by Doppler and MRI in late onset IUGR. Ultrasound Obstet Gynecol 44(S1):131-132

    Google Scholar 

  53. Sun L, Macgowan C, Sled J, Yoo S-J, Manlhiot C, Porayette P et al (2015) Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 131(15):1313–1323

    Article  CAS  PubMed  Google Scholar 

  54. van Amerom J, Roy C, Prsa M, Kingdom J, Macgowan C, Seed M (2013) Assessment of late-onset fetal growth restriction by phase contrast MR. ISMRM, Salt Lake City, Abstract 5928

    Google Scholar 

  55. Van Lierde M, Oberweis D, Thomas K (1984) Ultrasonic measurement of aortic and umbilical blood flow in the human fetus. Obstet Gynecol 63:801–805

    PubMed  Google Scholar 

  56. Wedegartner U, Kooijman H, Yamamura J, Frisch M, Weber C, Buchert R et al (2010) In vivo MRI measurement of fetal blood oxygen saturation in cardiac ventricles of fetal sheep: a feasibility study. Magn Reson Med 64:32–41

    Article  PubMed  Google Scholar 

  57. Wladimiroff J, Tonge H, Stewart P (1986) Doppler ultrasound assessment of cerebral blood flow in the human fetus. BJOG Int J Obstet Gynecol 93:471–475

    Article  CAS  Google Scholar 

  58. Wright G, Hu B, Macovski A (1991) Estimating oxygen saturation of blood in vivo with MR imaging at 1.5T. J Magn Reson Imaging 1(3):275–283

    Article  CAS  PubMed  Google Scholar 

  59. Yamamura J, Frisch M, Ecker H, Graessner J, Hecher K, Adam G et al (2011) Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering. Eur Radiol 21:142–149

    Article  PubMed  Google Scholar 

  60. Yamamura J, Kopp I, Frisch M, Fischer R, Valett Dipl-Ing K, Hecher K et al (2012) Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging 35:1071–1076

    Article  PubMed  Google Scholar 

  61. Zhu M, Madathil S, Miller S, Windrim R, Macgowan C, Kingdom J et al (2015) Fetal haemodynamic assessment in a case of late-onset intrauterine growth restriction by phase contrast MRI and T2 mapping. J Cardiovasc Magn Reson 17(S1):P27

    Article  PubMed Central  Google Scholar 

  62. Zhu M, Madathil S, Taylor G, Miller S, Windrim R, Sled J et al (2015) Fetal hemodynamics of intrauterine growth restriction by phase contrast MRI and MR oximetry. International Society of Magnetic Resonance in Medicine, Toronto

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Seed MBBS, MRCPCH, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seed, M. (2016). Fetal Cardiovascular Magnetic Resonance. In: Masselli, G. (eds) MRI of Fetal and Maternal Diseases in Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-319-21428-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21428-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21427-6

  • Online ISBN: 978-3-319-21428-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics