Skip to main content

Largest Empty Square Queries in Rectilinear Polygons

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9155))

Included in the following conference series:

Abstract

Given a rectilinear polygon P and a point \(p \in P\), what is a largest axis-parallel square in P that contains p? This question arises in VLSI design from physical limitations of manufacturing processes. Related problems with disks instead of squares and point sets instead of polygons have been studied previously.

We present an efficient algorithm to preprocess P in time O(n) for simple polygons or \(O(n \log n)\) if holes are allowed. The resulting data structure of size O(n) can be used to answer largest square queries for any point in P in time \(O(\log n)\). Given a set of points Q instead of a rectilinear polygon, the same algorithm can be used to find a largest square containing a given query point but not containing any point in Q in its interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, H.-K., Bae, S.W., Knauer, C., Lee, M., Shin, C.-S., Vigneron, A.: Realistic roofs over a rectilinear polygon. Computational Geometry: Theory and Applications 46(9), 1042–1055 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)

    MathSciNet  Google Scholar 

  3. Aichholzer, O., Cheng, H., Devadoss, S.L., Hackl, T., Huber, S., Li, B., Risteski, A.: What makes a tree a straight skeleton? In: CCCG, pp. 253–258 (2012)

    Google Scholar 

  4. Augustine, J., Das, S., Maheshwari, A., Nandy, S.C., Roy, S., Sarvattomananda, S.: Localized geometric query problems. Computational Geometry 46(3), 340–357 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific (2013)

    Google Scholar 

  6. Bagheri, A., Razzazi, M.: Drawing free trees inside simple polygons using polygon skeleton. Computing and Informatics 23(3), 239–254 (2012)

    MathSciNet  Google Scholar 

  7. Blum, H., et al.: A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form 19(5), 362–380 (1967)

    Google Scholar 

  8. Boissonnat, J.-D., Czyzowicz, J., Devillers, O., Yvinec, M.: Circular separability of polygons. Algorithmica 30(1), 67–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete & Computational Geometry 21(3), 405–420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duda, R., Hart, P.: Pattern classification and scene analysis (1973)

    Google Scholar 

  11. Dumitrescu, A., Jiang, M.: Maximal empty boxes amidst random points. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 529–540. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: BonnRoute: Algorithms and data structures for fast and good VLSI routing. ACM Transactions on Design Automation of Electronic Systems (TODAES) 18(2), 32:1–32:24 (2013). Preliminary version in the Proceedings of the 49th Annual Design Automation Conference, pp. 459–464

    Article  Google Scholar 

  13. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM Transactions on Graphics (TOG) 4(2), 74–123 (1985)

    Article  MATH  Google Scholar 

  14. Gürsoy, H.N., Patrikalakis, N.M.: An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part I algorithms. Engineering with computers 8(3), 121–137 (1992)

    Article  MATH  Google Scholar 

  15. Hwang, F.K.: An \(O(n \log n)\) algorithm for rectilinear minimal spanning trees. Journal of the ACM 26(2), 177–182 (1979)

    Article  MATH  Google Scholar 

  16. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in monge matrices and monge partial matrices, and their applications. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 338–355. SIAM (2012)

    Google Scholar 

  17. Kaplan, H., Sharir, M.: Finding the maximal empty disk containing a query point. In: Proceedings of the 2012 Symposium on Computational Geometry, pp. 287–292. ACM (2012)

    Google Scholar 

  18. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM Journal on Computing 12(1), 28–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lee, D.-T., Wong, C.K.: Voronoi diagrams in \(L_1 (L_\infty )\) metrics with 2-dimensional storage applications. SIAM Journal on Computing 9(1), 200–211 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Muller, D.E., Preparata, F.P.: Finding the intersection of two convex polyhedra. Theoretical Computer Science 7(2), 217–236 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Papadopoulou, E., Lee, D.-T.: The \(L_\infty \) Voronoi diagram of segments and VLSI applications. International Journal of Computational Geometry & Applications 11(05), 503–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peschka, G.: Kotirte Ebenen und deren Anwendung. Verlag Buschak & Irrgang, BrĂĽnn (1877)

    Google Scholar 

  23. Rosenfeld, A.: Axial representations of shape. Computer Vision, Graphics, and Image Processing 33(2), 156–173 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Seidel, R.: The nature and meaning of perturbations in geometric computing. Discrete & Computational Geometry 19(1), 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on Foundations of Computer Science, pp. 151–162 (1975)

    Google Scholar 

  26. Tanase, M., Veltkamp, R.C.: Polygon decomposition based on the straight line skeleton. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 58–67. ACM (2003)

    Google Scholar 

  27. Vermeer, P.J.: Two-dimensional MAT to boundary conversion. In: Proceedings on the Second ACM Symposium on Solid Modeling and Applications, pp. 493–494. ACM (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gester, M., Hähnle, N., Schneider, J. (2015). Largest Empty Square Queries in Rectilinear Polygons. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21404-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21403-0

  • Online ISBN: 978-3-319-21404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics