Skip to main content

Approximation Algorithms for the Connected Sensor Cover Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

We study the minimum connected sensor cover problem (\(\mathsf {MIN}\)-\(\mathsf {CSC}\)) and the budgeted connected sensor cover (\(\mathsf {Budgeted}\)-\(\mathsf {CSC}\)) problem, both motivated by important applications in wireless sensor networks. In both problems, we are given a set of sensors and a set of target points in the Euclidean plane. In \(\mathsf {MIN}\)-\(\mathsf {CSC}\), our goal is to find a set of sensors of minimum cardinality, such that all target points are covered, and all sensors can communicate with each other (i.e., the communication graph is connected). We obtain a constant factor approximation algorithm, assuming that the ratio between the sensor radius and communication radius is bounded. In \(\mathsf {Budgeted}\)-\(\mathsf {CSC}\) problem, our goal is to choose a set of B sensors, such that the number of targets covered by the chosen sensors is maximized and the communication graph is connected. We also obtain a constant approximation under the same assumption.

Research supported in part by the National Basic Research Program of China Grant 2015CB358700, 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61202009, 61033001, 61361136003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension. DCG 14(1), 463–479 (1995)

    MATH  Google Scholar 

  3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SICOMP 40(6), 1740–1766 (2011)

    Article  MATH  Google Scholar 

  4. Calinescu, G., Zelikovsky, A.: The polymatroid steiner problems. JCO 9(3), 281–294 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585. SIAM (2012)

    Google Scholar 

  6. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algorithm for the group steiner problem. Discrete Applied Mathematics 154(1), 15–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.Z.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. DCG 37(1), 43–58 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Dai, D., Yu, C.: A 5+ \(\epsilon \)-approximation algorithm for minimum weighted dominating set in unit disk graph. TCS 410(8), 756–765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM (2014)

    Google Scholar 

  11. Du, D.Z., Wan, P.J.: Connected Dominating Set: Theory and Applications, vol. 77. Springer Science & Business Media (2012)

    Google Scholar 

  12. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the vc-dimension is small. IPL 95(2), 358–362 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: STOC, pp. 448–455. ACM (2003)

    Google Scholar 

  14. Feige, U.: A threshold of ln n for approximating set cover. JACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: STOC, pp. 396–402. ACM (2005)

    Google Scholar 

  16. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group steiner tree problem. In: SODA, pp. 253–259. SIAM (1998)

    Google Scholar 

  17. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SICOMP 24(2), 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guha, S., Khuller, S.: Improved methods for approximating node weighted steiner trees and connected dominating sets. Information and computation 150(1), 57–74 (1999)

    Article  MathSciNet  Google Scholar 

  19. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: self-organization of sensor networks for efficient query execution. IEEE/ACM Transactions on Networking 14(1), 55–67 (2006)

    Article  Google Scholar 

  20. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum k-coverage. Naval Research Logistics 45(6), 615–627 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted dominating set in unit disk graph. JCO 18(2), 179–194 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: SODA, vol. 1, p. 4. Citeseer (2000)

    Google Scholar 

  23. Khuller, S., Purohit, M., Sarpatwar, K.K.: Analyzing the optimal neighborhood: algorithms for budgeted and partial connected dominating set problems. In: SODA, pp. 1702–1713. SIAM (2014)

    Google Scholar 

  24. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuo, T.W., Lin, K.J., Tsai, M.J.: Maximizing submodular set function with connectivity constraint: theory and application to networks. In: INFOCOM, pp. 1977–1985. IEEE (2013)

    Google Scholar 

  26. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 898–909. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  27. Lichtenstein, D.: Planar formulae and their uses. SICOMP 11(2), 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: SCG, pp. 17–22. ACM (2009)

    Google Scholar 

  29. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Mathematical Programming 14(1), 265–294 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pyrga, E., Ray, S.: New existence proofs \(\varepsilon \)-nets. In: SCG, pp. 199–207. ACM (2008)

    Google Scholar 

  31. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In: STOC, pp. 641–648. ACM (2010)

    Google Scholar 

  32. Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: STOC, pp. 783–792. ACM (2011)

    Google Scholar 

  33. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. In: INFOCOM, vol. 3, pp. 1597–1604. IEEE (2002)

    Google Scholar 

  34. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cambridge University Press (2011)

    Google Scholar 

  35. Willson, J., Ding, L., Wu, W., Wu, L., Lu, Z., Lee, W.: A better constant-approximation for coverage problem in wireless sensor networks (preprint)

    Google Scholar 

  36. Wu, L., Du, H., Wu, W., Li, D., Lv, J., Lee, W.: Approximations for minimum connected sensor covereq:cellsum. In: INFOCOM, pp. 1187–1194. IEEE (2013)

    Google Scholar 

  37. Zhang, W., Wu, W., Lee, W., Du, D.Z.: Complexity and approximation of the connected set-cover problem. Journal of Global Optimization 53(3), 563–572 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zou, F., Wang, Y., Xu, X.H., Li, X., Du, H., Wan, P., Wu, W.: New approximations for minimum-weighted dominating sets and minimum-weighted connected dominating sets on unit disk graphs. TCS 412(3), 198–208 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qicai Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, L., Li, J., Shi, Q. (2015). Approximation Algorithms for the Connected Sensor Cover Problem. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics