Skip to main content

Abdominal Imaging Dual-Energy CT Applications

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

Dual energy CT (DECT) technology offers enhanced capabilities that can benefit both oncologic and nononcologic imaging in the abdomen. By virtue of scanning with two different energies, material decomposition is now possible on the basis of their energy dependent attenuation profile. Improvements in the iodine conspicuity on processed low energy virtual monochromatic (VMC) images and the iodine maps can benefit lesion detection and characterization. VMC images generated with desired energies (40–140 keV) can improve lesion to background contrast and improve the quality of vascular imaging for pre-surgical planning. The iodine specific images can enable separation of hypo attenuating tumors from low attenuation or hyperdense cysts as well as facilitate detection of isoattenuating tumors such as pancreatic mass, peritoneal disease or for defining tumor target for image-guided therapies. Moreover, quantitative iodine mapping can serve as a surrogate biomarker for monitoring post-treatment effects. DECT also shows promise in nononcologic imaging in the abdomen including discrimination of genitourinary stone composition, which impacts clinical management, and renal lesions characterization. Additional DECT applications include multimaterial decomposition, potentially allowing quantification of fat and fibrotic content of the liver. Furthermore, DECT improves patient safety with CT exams, allowing decreased iodinated contrast administration while achieving similar imaging characteristics and decreasing radiation exposure in multiphase examinations through incorporation of VUE (virtual unenhanced) images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakayama Y, Awai K, Funama Y, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology. 2005;237:945–51.

    Article  PubMed  Google Scholar 

  2. Kalva SP, Sahani DV, Hahn PF, et al. Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr. 2006;30:391–7.

    Article  PubMed  Google Scholar 

  3. Marin D, Nelson RC, Samei E, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection – initial clinical experience. Radiology. 2009;251:771–9.

    Article  PubMed  Google Scholar 

  4. Yeh BM, Shepherd JA, Wang ZJ, et al. Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol. 2009;193:47–54.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Matsumoto K, Jinzaki M, Tanami Y, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology. 2011;259:257–62.

    Article  PubMed  Google Scholar 

  6. Schindera ST, Nelson RC, Mukundan S, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection – phantom study. Radiology. 2008;246:125–32.

    Article  PubMed  Google Scholar 

  7. Robinson E, Babb J, Chandarana H, et al. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol. 2010;45:413–8.

    PubMed  Google Scholar 

  8. Marin D, Nelson RC, Barnhart H, et al. Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique – preliminary results. Radiology. 2010;256:450–9.

    Article  PubMed  Google Scholar 

  9. De Cecco CN, Darnell A, Rengo M, et al. Dual-energy CT: oncologic applications. AJR Am J Roentgenol. 2012;199:S98–105.

    Article  PubMed  Google Scholar 

  10. Patel BN, Thomas JV, Lockhart ME, et al. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68:148–54.

    Article  CAS  PubMed  Google Scholar 

  11. Cairns P. Renal cell carcinoma. Cancer Biomark. 2011;9:461–73.

    PubMed Central  Google Scholar 

  12. Brown CL, Hartman RP, Dzyubak OP, et al. Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol. 2009;19:1289–95.

    Article  CAS  PubMed  Google Scholar 

  13. Song KD, Kim CK, Park BK, et al. Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. AJR Am J Roentgenol. 2011;197:W1076–82.

    Article  PubMed  Google Scholar 

  14. Chandarana H, Megibow AJ, Cohen BA, et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol. 2011;196:W693–700.

    Article  PubMed  Google Scholar 

  15. Graser A, Johnson TRC, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252:433–40.

    Article  PubMed  Google Scholar 

  16. Graser A, Becker CR, Staehler M, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45:399–405.

    PubMed  Google Scholar 

  17. Kaza RK, Caoili EM, Cohan RH, et al. Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol. 2011;197:1375–81.

    Article  PubMed  Google Scholar 

  18. Leschka S, Stolzmann P, Baumüller S, et al. Performance of dual-energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol. 2010;17:526–34.

    Article  PubMed  Google Scholar 

  19. Neville AM, Gupta RT, Miller CM, et al. Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology. 2011;259:173–83.

    Article  PubMed  Google Scholar 

  20. Ho LM, Marin D, Neville AM, et al. Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? AJR Am J Roentgenol. 2012;198:840–5.

    Article  PubMed  Google Scholar 

  21. Silva AC, Morse BG, Hara AK, et al. Dual-energy (spectral) CT: applications in abdominal imaging. Radiogr Rev Publ Radiol Soc N Am Inc. 2011;31:1031–46; discussion 1047–1050.

    Google Scholar 

  22. Jiang T, Zhu AX, Sahani DV. Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. J Hepatol. 2013;58:169–77.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH, Lee JM, Kim KW, et al. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps. Invest Radiol. 2011;46:77–84.

    Article  PubMed  Google Scholar 

  24. Saw KC, McAteer JA, Monga AG, et al. Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol. 2000;175:329–32.

    Article  CAS  PubMed  Google Scholar 

  25. Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol. 1998;159:673–5.

    Article  CAS  PubMed  Google Scholar 

  26. Bierkens AF, Hendrikx AJ, De La Rosette JJ, et al. Treatment of mid- and lower ureteric calculi: extracorporeal shock-wave lithotripsy vs laser ureteroscopy. A comparison of costs, morbidity and effectiveness. Br J Urol. 1998;81:31–5.

    Article  CAS  PubMed  Google Scholar 

  27. Eisner BH, Kambadakone A, Monga M, et al. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol. 2009;181:1710–5.

    Article  PubMed  Google Scholar 

  28. Perks AE, Schuler TD, Lee J, et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72:765–9.

    Article  PubMed  Google Scholar 

  29. Kim SC, Burns EK, Lingeman JE, et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res. 2007;35:319–24.

    Article  PubMed  Google Scholar 

  30. Graser A, Johnson TRC, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol. 2008;43:112–9.

    Article  PubMed  Google Scholar 

  31. Kulkarni NM, Eisner BH, Pinho DF, et al. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37:37–45.

    Article  PubMed  Google Scholar 

  32. Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi- detector CT. Radiographics. 2007;27(3):791–803.

    Article  PubMed  Google Scholar 

  33. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomog- raphy using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.

    Article  PubMed  Google Scholar 

  34. Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spec- tral imaging dual-energy CT with and with- out metal artefact reduction software. Eur Radiol. 2012;22(6):1331–40.

    Article  PubMed  Google Scholar 

  35. Bohte AE, van Werven JR, Bipat S, et al. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol. 2011;21:87–97.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Artz NS, Hines CDG, Brunner ST, et al. Quantification of hepatic steatosis with dual-energy computed tomography. Invest Radiol. 2012;47:603–10.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mendler M-H, Bouillet P, Sidaner AL, et al. Dual-energy CT in the diagnosis and quantification of fatty liver: limited clinical value in comparison to ultrasound scan and single-energy CT, with special reference to iron overload. J Hepatol. 1998;28:785–94.

    Article  CAS  PubMed  Google Scholar 

  38. Fischer MA, Gnannt R, Raptis D, et al. Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study. Invest Radiol. 2011;46:351–8.

    Article  CAS  PubMed  Google Scholar 

  39. Thomsen HS, Morcos SK. Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) guidelines. Br J Radiol. 2003;76:513–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gleeson TG, Bulugahapitiya S. Contrast-induced nephropathy. AJR Am J Roentgenol. 2004;183:1673–89.

    Article  PubMed  Google Scholar 

  41. Ng CS, Shaw AD, Bell CS, et al. Effect of IV contrast medium on renal function in oncologic patients undergoing CT in ICU. AJR Am J Roentgenol. 2010;195:414–22.

    Article  PubMed  Google Scholar 

  42. Delesalle M-A, Pontana F, Duhamel A, et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology. 2013;267:256–66.

    Article  PubMed  Google Scholar 

  43. Mahgerefteh S, Blachar A, Fraifeld S, et al. Dual-energy derived virtual nonenhanced computed tomography imaging: current status and applications. Semin Ultrasound CT MR. 2010;31:321–7.

    Article  PubMed  Google Scholar 

  44. Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16:256–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushyant V. Sahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agrawal, M., Patino, M., Sahani, D.V., Thomas, A.C. (2015). Abdominal Imaging Dual-Energy CT Applications. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics