Skip to main content

Optimized Tumor Breast Cancer Classification Using Combining Random Subspace and Static Classifiers Selection Paradigms

  • Chapter
  • First Online:
Applications of Intelligent Optimization in Biology and Medicine

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 96))

Abstract

Breast cancer is the most frequently diagnosed cancer in women worldwide and the leading cause of cancer death among females. Currently the most effective method for early detection and screening of breast abnormalities is mammography. Computer aided design (CAD) systems are used to assist radiologists in better classification of tumor in a mammography as benign or malignant. Ensemble classifier construction has received considerable attention in the recent years. In the modeling of classifier ensemble, many researchers believe that the success of classifier ensembles only when classifier members present diversity among themselves. The most widely used ensemble creation techniques are focused on incorporating the concept of diversity with the construction of different features subsets or selection of the most diverse components from initial classifiers pool. Therefore the motivation of this work is to propose a CAD system using a novel classification approach based on feature selection and static classifier selection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beam, C.A., Sullivan, D.C., Layde, P.M.: Effect of human variability on independent double reading in screening mammography. Acad. Radiol. 3, 891–897 (1996)

    Google Scholar 

  2. Schneider, A.: Better detection: improving our chances. In: Yaffse, M.J. (ed.), Digital Mammography: Fifth International Workshop on Digital Mammography, pp. 3–6. Medical Physics Publishing (2000)

    Google Scholar 

  3. Leichter, I., Lederman, R., Buchbinder, S., Bamberger, P., Novak, B., Fields, S.: Optimizing parameters for computer-aided diagnosis of microcalcications at mammography. Acad. Radiol. 7, 406–412 (2006)

    Google Scholar 

  4. Baker, J., Rosen, E., Lo, J.Y., Gimenez, E.I., Walsh, R., Soo, M.S.: Computer-Aided Detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. Am. J. Roentgenol. 181, 1083–1088 (2003)

    Google Scholar 

  5. Qiang, L.: Recent progress in computer-aided diagnosis of lung nodules on thin section CT. Comput. Med. Imaging Graph. 31, 248–257 (2007)

    Google Scholar 

  6. Azizi, N., Farah, N., Khadir, M.T., Sellami, M.: Arabic handwritten word recognition using classifiers selection and features extraction selection. In: Recent Advances in Intelligent Information Systems, pp. 735–742, Academic Publishing House, Warsaw (2009)

    Google Scholar 

  7. Azizi, N., Farah, N., Sellami, M.: Ensemble classifier construction for Arabic handwritten recongnition. In: 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA) (2011)

    Google Scholar 

  8. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Google Scholar 

  9. Azween, A., Kausar, N., Dey, N.: Ensemble clustering algorithm with supervised classification of clinical data for early diagnosis of coronary artery disease. J. Med. Imaging Health Inf. (2014)

    Google Scholar 

  10. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Google Scholar 

  11. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Int. J. Inf. Fusion 6(1), 63–81 (2005)

    Google Scholar 

  12. Huang, Y.S., Suen, C.Y.: Method of combining multiple experts for the recognition of unconstrained handwritten numeral. IEEE Trans. Pattern Anal. Mach. Intell. 7, 90–94 (1995)

    Google Scholar 

  13. Shipp, C. A. Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Int. J. Inf. Fusion 3(2), 135–148 (2002)

    Google Scholar 

  14. Rahman, A., Verma, B.: Ensemble classifier generation using non-uniform layered clustering and genetic algorithm. Elsevier Knowl. Based Syst. 43, 30–42 (2013)

    Article  Google Scholar 

  15. Breiman, L.: Bagging predictors. Mach. Learn. J. 24(2), 123–140 (1996)

    Google Scholar 

  16. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: 13th International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  17. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  18. Azizi, N., Farah, N., Sellami, M.: Progressive algorithm for classifier ensemble construction based on diversity: application to the arabic handwritten recognition. In: Information and Communication Systems (2011)

    Google Scholar 

  19. William, H.: Breast Care: A Clinical Guidebook for Women’s Primary Health Care Providers. Springer, New York (1999)

    Google Scholar 

  20. Dheeba, J., Singh, N., Tamil, S.: Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J. Biomed. Inf. 49, 45–52 (2014)

    Google Scholar 

  21. Azizi, N., Tlili, Y., Zemmal, N.: A computer-aided diagnosis system for breast cancer combining features complementarily and new scheme of SVM classifiers fusion. Int. J. Multimedia Ubiquit. Eng. (2013)

    Google Scholar 

  22. Malich, A., Schmidt, S., Fischer, D.R., Facius, M., Kaiser, W.A.: The performance of computer-aided detection when analyzing prior mammograms of newly detected breast cancers with special focus on the time interval from initial imaging to detection. Eur. J. Radiol. 69, 574–578 (2009)

    Article  MATH  Google Scholar 

  23. Valavanis, I. Mougiakakou, S. G. Nikita, K. S.: Computer Aided Diagnosis of CT Focal Liver Lesions by an Ensemble of Neural Network and Statistical Classifiers. IEEE (2004)

    Google Scholar 

  24. Tabalvandani, N., Faez, K.: Multiple classifier systems for breast mass classification. In: The 22nd Iranian Conference on Electrical Engineering, IEEE (2004)

    Google Scholar 

  25. Canuto, A.M.P., Nascimento, D.S.C.: A Genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function. In: World Congress on Computational Intelligence (2012)

    Google Scholar 

  26. Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evol. Comput. 4(4), 327–336 (2000)

    Google Scholar 

  27. Gerra-Salcedo, C., Whitley, D.: Genetic approach to feature selection for ensemble creatine. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 236–243 (1999)

    Google Scholar 

  28. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, New York (1993)

    Google Scholar 

  29. Skurichina, M., Duin, R.P.W.: Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5(2),121–135 (2002)

    Google Scholar 

  30. Kuncheva, L.I., Skurichina, M., Duin, R.P.W.: An experimental study on diversity for bagging and boosting with linear classifiers. Inf. Fusion 3(4), 245–258 (2002)

    Google Scholar 

  31. Grandvalet, Y.: Bagging equalizes influence. Mach. Learn. 55, 251–270 (2004)

    Google Scholar 

  32. Breiman L.: Arcing classifiers. Ann. Stat. 26, 801–849 (1998)

    Google Scholar 

  33. Zhang, B. Pham, T.D.: Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinf. 12, 128 (2011)

    Google Scholar 

  34. Armano, G., Chira, C., Hatami, N.: A new gene selection method based on random subspace ensemble for microarray cancer classification. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 191–201. Springer, Heidelberg (2011)

    Google Scholar 

  35. Chawla, N.V., Bowyer, K.W.: Random subspaces and sub sampling for 2-d face recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 582–589 (2005)

    Google Scholar 

  36. Roli, F., Giacinto, G., Vernazza, G.: Methods for designing multiple classifier systems. In: Proceedings of MCS, pp. 78–87 (2011)

    Google Scholar 

  37. Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Proceedings of the 1st Iberian Conference on Pattern Recognition and Image Analysis, pp. 1126–1138 (2003)

    Google Scholar 

  38. Dragiša, Ž. Joviša, Ž.: Shape ellipticity from Hu moment invariants. Appl. Math. Comput. 226(1), 406–414 (2014)

    Google Scholar 

  39. Huang, Z., Leng, J.: Analysis of Hu’s moment invariants on image scaling and rotation. In: International Conference on Computer Engineering and Technology (ICCET) (2010)

    Google Scholar 

  40. Zhang, L., Xiang, F.: Application of improved HU moments in object recognition. In: IEEE International Conference on Automation and Logistics (ICAL), pp. 224–228 (2014)

    Google Scholar 

  41. Hu, M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  42. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973)

    Google Scholar 

  43. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979)

    Google Scholar 

  44. Cecille, F., Dana, K., Otman, B.: An evaluation of classifier-specific filter measure performance for feature selection. Pattern Recognit. In press

    Google Scholar 

  45. Kashif, J., Sameen, M., Haroon, A.B.: A two-stage Markov blanket based feature selection algorithm for text classification. Neurocomputing 157, 91–104 (2015)

    Google Scholar 

  46. Yasmine, G., Youcef, C., Bilal, H.: The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognit. 48, 103–113 (2015)

    Google Scholar 

  47. Nicoletta, D, Barbara, P.: Similarity of feature selection methods: an empirical study across data intensive classification tasks. Expert Syst. Appl. 42, 4632–4642 (2015)

    Google Scholar 

  48. Qu, G., Hariri, S., Yousif, M.: A new dependency and correlation analysis for features. IEEE Trans. Knowl. Data Eng. 17(9), 1199–1207 (2005)

    Article  Google Scholar 

  49. Adil, F., Zahir, T., Ibrahim, K., Abdulmohsen, A., Albert, Y.Z.: An optimal and stable feature selection approach for traffic classification based on multi-criterion fusion. Future Gener. Comput. Syst. 36, 156–169 (2014)

    Article  Google Scholar 

  50. Langley, P.: Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance (1994)

    Google Scholar 

  51. Hui, L., Chang, J.L., Xian-Jun, W., Jie, S.: Statistics-based wrapper for feature selection: an implementation on financial distress identification with support vector machine. Appl. Soft Comput. 19, 57–67 (2014)

    Article  Google Scholar 

  52. Wang, L., Zhou, N., Chu, F.: A general wrapper approach to selection of class- dependent features. IEEE Trans. Neural Netw. 19(7), 1267–1278 (2008)

    Article  Google Scholar 

  53. Wu, Y.L., Tang, C.Y., Hor, M.K., Wu, P.F.: Feature selection using genetic algorithm and cluster validation. Expert Syst. Appl. 38, 2727–2732 (2011)

    Article  Google Scholar 

  54. Chakraborty, D., Pal, N.R.: A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Netw. 15(1), 110–123 (2004)

    Article  Google Scholar 

  55. Chan, K.Y., Kwong, C.K., Tsim, Y.C., Aydin, M.E., Fogarty, T.C.: A new orthogonal array based crossover, with analysis of gene interactions, for evolutionary algorithms and its application to car door design. Expert Syst. Appl. 37(5), 3853–3862 (2010)

    Article  Google Scholar 

  56. Pablo, B., José, A.G., José, M.P.: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier. Knowl.-Based Syst. 55, 140–147 (2014)

    Article  Google Scholar 

  57. Nemati, S., Basiri, M.E., Aghaee, N.G., Aghdam, M.H.: A novel ACO-GA hybrid algorithm for feature selection in protein function prediction. Expert Syst. Appl. 36, 12086–12094 (2009)

    Article  Google Scholar 

  58. Zhu, Z., Ong, Y.S., Dash, M.: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognit. 49(11), 3236–3248 (2007)

    Article  Google Scholar 

  59. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1/2), 273–324 (1997)

    Article  Google Scholar 

  60. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning (2000)

    Google Scholar 

  61. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognit. Lett. 29, 1351–1357 (2008)

    Article  Google Scholar 

  62. Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst. Appl. 33, 49–60 (2007)

    Article  Google Scholar 

  63. Huang, J., Cai, Y., Xu, X.: A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognit. Lett. 28, 1825–1844 (2007)

    Article  Google Scholar 

  64. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Google Scholar 

  65. Monirul, K. Md., Shahjahan, Md., Murase, K.: A new local search based hybrid genetic algorithm for feature selection. Neuro-computing 74, 2914–2928 (2011)

    Google Scholar 

  66. Sahiner, B.: Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242(3), 716–724 (2007)

    Article  Google Scholar 

  67. Xiangjun Shi, H.D.C., Hu, L.: Mass detection and classification in breast ultrasound images using fuzzy SVM. In: JCIS-Proceedings (2006)

    Google Scholar 

  68. Cheng, H.D., et al.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit. 43, 299–317 (2010)

    Google Scholar 

  69. Li, S., Wu, H., Wan, D., Zhu, J.: An effective feature selection method for hyper spectral image classification based on genetic algorithm and support vector machine. Knowl.-Based Syst. 24(1), 40–48 (2011)

    Article  MATH  Google Scholar 

  70. Li, R., Lu, J., Zhang, Y., Zhao, T.: Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation. Knowl.-Based Syst. 23(3), 195–201 (2010)

    Article  Google Scholar 

  71. Tsai, C.F., et al.: Genetic algorithms in feature and instance selection. Knowl.-Based Syst. 39, 240–247 (2013)

    Google Scholar 

  72. Buscema, M.: Genetic doping algorithm (gend d): theory and applications, unpublished

    Google Scholar 

  73. Afaneh, S., et al.: Virus detection using clonal selection algorithm with Genetic Algorithm (VDC algorithm). Appl. Soft Comput. 13, 239–246 (2013)

    Google Scholar 

  74. Lee, J., Kim, D.-W.: Memetic feature selection algorithm for multi-label Classification. Inf. Sci. 293, 80–96 (2015)

    Article  Google Scholar 

  75. Sun, X., et al.: Interactive genetic algorithms with large population and semi-supervised learning. Appl. Soft Comput. 12, 3004–3013 (2012)

    Google Scholar 

  76. IARL: Digital Dataabse for Screening Mammography (http://marathon.csee.usf.edu/Mammography/)

  77. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Yaffe M.J. (ed.) Proceedings of the Fifth International Workshop on Digital Mammography, pp. 212–218, Medical Physics Publishing (2001)

    Google Scholar 

  78. Samanta, S., Ahmed, S.K.S., Salem, M.A.-M. M., Nath, S.S., Dey, N., Chowdhury, S.S.: Haralick features based automated glaucoma classification using back propagation neural network. In: The 2014 International Conference on Frontiers of Intelligent Computing: Theory and applications (FICTA) (2014)

    Google Scholar 

  79. Dey, N., Roy, A.B., Pal, M., Das, A.: FCM based blood vessel segmentation method for retinal images. Int. J. Comput. Sci. Netw. 1(3), 1–5 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabiha Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheriguene, S., Azizi, N., Zemmal, N., Dey, N., Djellali, H., Farah, N. (2016). Optimized Tumor Breast Cancer Classification Using Combining Random Subspace and Static Classifiers Selection Paradigms . In: Hassanien, AE., Grosan, C., Fahmy Tolba, M. (eds) Applications of Intelligent Optimization in Biology and Medicine. Intelligent Systems Reference Library, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-21212-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21212-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21211-1

  • Online ISBN: 978-3-319-21212-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics