Skip to main content

Non-destructive Quality Analysis of Fruits

  • Chapter
Postharvest Quality Assurance of Fruits

Abstract

The time-dependent variations in the physiological, textural, compositional and sensory characteristics associated with the fruits open a vast area for research possibilities in order to meet the consistent demand of associated professionals involved from handling to delivering fresh or processed form of fruits to the consumers (Siddiqui and Dhua 2010). Some of the characteristics associated with fruits are having profound correlation over the physiological changes happening during fruit maturation, ripening and senescence (Siddiqui et al. 2014b). Variations in the environmental parameters thus affect the basic metabolic activities of respiring and transpiring fruits, and it is not surprising to expect great variations in post-harvest characters and behaviour of fruits. Fruits are classed on the basis of plant parts used and also on the respiration behaviour. The structural features help in deciding the handling, suitability and performance of the fruits on machine. Whereas, the respiration behaviour of fruits describes the ways in which this important commodity should be harvested, handled, transported, treated and stored effectively (Siddiqui et al. 2014a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, J. A., Lu, R., Upchurch, B. L., & Stroshine, R. L. (1997). Technologies for nondestructive quality evaluation of fruits and vegetables. Horticultural Reviews, 20, 1–120.

    Google Scholar 

  • Barcelon, E. G., Tojo, S., & Watanabe, K. (1999). X-ray CT imaging and quality detection of peach at different physiological maturity. Transactions of the American Society of Agricultural Engineers, 42, 435–441.

    Article  Google Scholar 

  • Brecht, J. K., Shewfelt, R. L., Garner, J. C., & Tollner, E. W. (1991). Using x-ray computed tomography (x-ray CT) to nondestructively determine maturity of green tomatoes. Horticultural Science, 26, 45–47.

    Google Scholar 

  • Chen, P., McCarthy, M. J., & Kauten, R. (1989). NMR for internal quality evaluation of fruits and vegetables. Transactions of the American Society of Agricultural Engineers, 32, 1747–1753.

    Article  Google Scholar 

  • Clark, C. J., & Burmeister, D. M. (1999). Magnetic resonance imaging of browning development in ‘Braeburn’ apple during controlled-atmosphere storage under high CO2. Horticultural Science, 34, 915–919.

    Google Scholar 

  • Clark, C. J., Hockings, P. D., Joyce, D. C., & Mazucco, R. A. (1997). Application of magnetic resonance imaging to pre and post-harvest studies of fruit and vegetables. Postharvest Biology and Technology, 11(1), 1–21.

    Article  Google Scholar 

  • Coupland, J., & McClements, D. J. (2001). Ultrasonics. In S. Gunasekaran (Ed.), Nondestructive food evaluation: Techniques to analyze properties and quality. New York: Marcel Dekker.

    Google Scholar 

  • Faust, M., Wang, P. C., & Maas, J. (1997). The use of magnetic resonance imaging in plant science. Horticultural Reviews, 20, 225–266.

    Google Scholar 

  • Finney, E. E., & Norris, K. H. (1978). X-ray scans for detecting hollow hearths in potatoes. American Potato Journal, 55, 95–105.

    Article  Google Scholar 

  • Gunasekaran, S. (Ed.). (2001). Nondestructive food evaluation: Techniques to analyze properties and quality. New York: Marcel Dekker.

    Google Scholar 

  • Gunasekaran, S., & Irudayaraj, J. (2001). Optical methods: Visible, NIR, and FTIR spectroscopy. In S. Gunaesekaran (Ed.), Nondestructive food evaluation: Techniques to analyze properties and quality. New York: Marcel Dekker.

    Google Scholar 

  • Han, Y. J., Bowers, S. V., & Dodd, R. B. (1992). Nondestructive detection of split-pit peaches. Transactions of the American Society of Agricultural Engineers, 35, 2063–2067.

    Article  Google Scholar 

  • Harrison, I. (2003). Non-destructive testing for fruit quality assurance. Innovations in Food Technology (No. 19), 86–87.

    Google Scholar 

  • Hernandez, N., Barreiro, P., Ruiz-Altisent, M., Ruiz-Cabello, J., & Fernandez-Valle, M. E. (2005). Detection of seeds in citrus using MRI under motion conditions and improvement with motion correction. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 26B(1), 81–92.

    Article  Google Scholar 

  • Hinshaw, W. S., Bottomley, P. A., & Holland, G. N. (1979). A demonstration of the resolution of NMR imaging in biological systems. Experientia, 35, 1268–1269.

    Article  CAS  Google Scholar 

  • Jha, S. N. (2010). Nondestructive evaluation of food quality theory and practices. New York: Springer.

    Book  Google Scholar 

  • Jha, A. K., Prasad, K., Kumar, V., & Prasad, K. (2009a). Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnology Progress, 25(5), 1476–1479.

    Article  CAS  Google Scholar 

  • Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. R. (2009b). Plant system: Nature’s nanofactory. Colloid and Surfaces B: Biointerfaces, 73(2), 219–223.

    Article  CAS  Google Scholar 

  • Johnson, M. (1985). Automation in citrus sorting and packing. Agrimation Conference and Expo, Chicago, IL, pp. 63–68.

    Google Scholar 

  • Kalia, M. (2010). Food quality management. Udaipur, India: Agrotech Publishing Academy.

    Google Scholar 

  • Keagy, P. M., Parvin, B., & Schatzki, T. F. (1996). Machine recognition of navel orange worm damage in x-ray images of pistachio nuts. Lebensmittel-Wissenschaft und -Technologie, 29, 140–145.

    Article  CAS  Google Scholar 

  • Lenker, D. H., & Adrian, P. A. (1971). Use of x-ray for selecting mature lettuce heads. Transactions of the American Society of Agricultural Engineers, 14, 894–898.

    Article  Google Scholar 

  • Lim, K. S., & Barigou, M. (2004). X-ray micro-computed tomography of cellular food products. Food Research International, 37(10), 1001–1012.

    Article  Google Scholar 

  • MacFall, J. S., & Johnson, G. A. (1994). The architecture of plant vasculature and transport as seen with magnetic resonance microscopy. Canadian Journal of Botany, 72, 1561–1573.

    Article  Google Scholar 

  • Mariette, F. (2004). NMR relaxometry and MRI techniques: a powerful association in food science. Comptes Rendus Chimie, 7(3/4), 221–232.

    Article  CAS  Google Scholar 

  • Mendoza, F., Verboven, P., Ho, Q. T., Kerckhofs, G., Wevers, M., & Nicolai, B. (2010). Multi fractal properties of pore-size distribution in apple tissue using X-ray imaging. Journal of Food Engineering, 99, 206–215.

    Article  Google Scholar 

  • Mittal, G. S. (1997). Computer based instrumentation sensors for inline measurement. In G. S. Mittal (Ed.), Computerized control systems in food industry (pp. 13–53). New York: Marcel Dekker.

    Google Scholar 

  • Mizrach, A. (2008). Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre- and postharvest processes—A review. Postharvest Biology and Technology, 48, 315–330.

    Article  Google Scholar 

  • Nylund, R. E., & Lutz, J. M. (1950). Separation of hollow heart potato tubers by mean of size grading, specific gravity and x-ray examination. American Potato Journal, 27, 214–222.

    Article  Google Scholar 

  • Povey, M. J. W., & McClements, D. J. (1988). Ultrasonics in food engineering. Part I: Introduction and experimental methods. Journal of Food Engineering, 8(4), 217–245.

    Article  Google Scholar 

  • Prasad, K. (2012) Statistical optimization: Response surface methodology (RSM) Approach. Compendium (SCPPO-12), 6–10 February, 2012, Longowal, India: SLIET.

    Google Scholar 

  • Prasad, K., Jale, R., Singh, M., Kumar, R., & Sharma, R. K. (2010a). Non-destructive evaluation of dimensional properties and physical characterization of Carissa carandas fruits. International Journal of Engineering Studies, 2(3), 321–327.

    Google Scholar 

  • Prasad, K., Jha, A. K., Prasad, K., & Kulkarni, A. R. (2010b). Can microbes mediate nano transformation? Indian Journal of Physics, 84(10), 1355–1360.

    Article  CAS  Google Scholar 

  • Prasad, K., Nath, N., & Prasad, K. (2000). Estimation of sugar content in commercially available beverages using ultrasonic velocity measurement. Indian Journal of Physics, 74A(4), 387–389.

    CAS  Google Scholar 

  • Prasad, K., Singh, Y., & Anil, A. (2012). Effects of grinding methods on the characteristics of Pusa 1121 rice flour. Journal of Tropical Agriculture and Food Science, 40(2), 193–201.

    Google Scholar 

  • Ranganna, S. (2007). Handbook of analysis and quality control for fruit and vegetable products. New Delhi, India: Tata McGraw-Hill.

    Google Scholar 

  • Sarkar, N., & Wolfe, R. R. (1983). Potential of ultrasonic measurement in food quality evaluation. Transactions of ASAE, 26(2), 624–629.

    Article  Google Scholar 

  • Schatzki, T. F., Witt, S. C., Wilkins, D. E., & Lenker, D. H. (1981). Characterization of growing lettuce from density contours—I. Head selection. Pattern Recognition, 13, 333–340.

    Article  Google Scholar 

  • Sheikh, A. S. (2012). Standardization of process parameters for the development of apple based fruit bar. M. Tech. Thesis, SLIET, Longowal, India.

    Google Scholar 

  • Siddiqui, M. W., & Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Current Science, 99, 1664–1668.

    CAS  Google Scholar 

  • Siddiqui, M. W., Dutta, P., Dhua, R. S., & Dey, A. (2014a). Changes in biochemical composition of mango in response to pre-harvest gibberellic acid spray. Agriculturae Conspectus Scientificus, 78, 331–335.

    Google Scholar 

  • Siddiqui, M. W., Longkumer, M., Ahmad, M. S., Barman, K., Thakur, P. K., & Kabir, J. (2014b). Postharvest biology and technology of sapota: A concise review. Acta Physiologiae Plantarum, 36, 3115–3122.

    Article  CAS  Google Scholar 

  • Singh, N. P., & Prasad, K. (1997). Experiments in material science. Delhi, India: Dhanpat Rai and Co. (Pvt.) Ltd. 131p.

    Google Scholar 

  • Singh, Y., & Prasad, K. (2013). Moringa oleifera leaf as functional food powder: Characterization and uses. International Journal of Agriculture Food Science & Technology, 4(4), 317–324.

    Google Scholar 

  • Suzuki, K., Tajima, T., Takano, S., Asano, T., & Hasegawa, T. (1994). Nondestructive methods for identifying injury to vapor heat treated papaya. Journal of Food Science, 59(855–857), 875.

    Google Scholar 

  • Tollner, E. W., Hung, Y. C., Upchurch, B. L., & Prussia, S. E. (1992). Relating X-ray absorption to density and water content in apples. Transactions of the American Society of Agricultural Engineers, 35, 1921–1929.

    Article  Google Scholar 

  • Yang, E.-C., Yang, M.-M., Liao, L.-H., & Wu, W.-Y. (2006). Non-destructive quarantine technique-potential application of using x-ray images to detect early infestations caused by oriental fruit fly (Bactrocera dorsalis) (Diptera: Tephritidae) in fruit. Formosan Entomologist, 26, 171–186.

    Google Scholar 

  • Yanling, C., & Haugh, C. G. (1994). Detection hollow heart in potatoes using ultrasound. Transactions of ASAE, 37(1), 217–222.

    Article  Google Scholar 

  • Zaltzman, A., Verma, B. P., & Schmilovitch, Z. (1987). Potential of quality sorting of fruits and vegetables using fluidized bed medium. Transactions of the American Society of Agricultural Engineers, 30, 823–831.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prasad, K. (2015). Non-destructive Quality Analysis of Fruits. In: Postharvest Quality Assurance of Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-21197-8_14

Download citation

Publish with us

Policies and ethics