Skip to main content

Site-Selective Self-Assembly of Nano-Objects on a Planar Substrate Based on Surface Chemical Functionalization

  • Conference paper
  • First Online:
Nanopackaging: From Nanomaterials to the Atomic Scale

Abstract

Surface chemical functionalization is a powerful tool to bridge the gap between top-down and bottom-up nanofabrication methods. By tuning their surface chemistry, we can enable whole sets of different nano-objects to be selectively deposited onto well-defined submicronic anchoring sites on macroscopic substrates. This potentially enables the development of unprecedented systems in different fields such as electronics, photonics or biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unless otherwise specified, the term “nanoparticle” will be used in the present text as a generic term for various types of nano-objects such as spheres, rods, wires or tubes of different materials.

  2. 2.

    Aminopropyltriethoxysilane.

  3. 3.

    Octadecyltrichlorosilane.

  4. 4.

    Octadecanethiol.

  5. 5.

    Polyvinyl pyridine.

  6. 6.

    Dithiol is used in this case for a molecule having a thiol group at each extremity of an alkyl chain, whereas it can also be used in the literature for a molecule having two thiol groups at one end of the alkyl chain.

  7. 7.

    aminobutylphosphonic acid.

References

  1. Jouvet, N., Bounouar, M.A., Ecoffey, S., Nauenheim, C., Beaumont, A., Monfray, S., Ruediger, A., Calmon, F., Souifi, A., Drouin, D.: Int. J. Nanosci. 11(04), 1240024 (2012). doi:10.1142/S0219581X12400248. url http://www.worldscientific.com/doi/abs/10.1142/S0219581X12400248

  2. Parekh, R., Beaumont, A., Beauvais, J., Drouin, D.: IEEE Trans. Electron Devices 59(4), 918 (2012). doi:10.1109/TED.2012.2183374. url http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145638

  3. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E.S., Watts, M.R.: Nature 493(7431), 195 (2013). doi:10.1038/nature11727. url http://www.ncbi.nlm.nih.gov/pubmed/23302859

  4. Copley, G., Moore, T.A., Moore, A.L., Gust, D.: Adv. Mater. 25(3), 456 (2013). doi:10.1002/adma.201201744. url http://doi.wiley.com/10.1002/adma.201201744

  5. Vignon, S.A., Jarrosson, T., Iijima, T., Tseng, H.R., Sanders, J.K.M., Stoddart, J.F.: J. Am. Chem. Soc. 126(32), 9884 (2004). doi:10.1021/ja048080k. url http://www.ncbi.nlm.nih.gov/pubmed/15303838

  6. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Science. 338(6111), 1177 (2012). doi:10.1126/science.1227268. url http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3843647&tool=pmcentrez&rendertype=abstract

  7. Kaewsaneha, C., Tangboriboonrat, P., Polpanich, D., Eissa, M., Elaissari, A.: J. Polym. Sci. Part A Polym. Chem. 51(22), 4779 (2013). doi:10.1002/pola.26902. url http://doi.wiley.com/10.1002/pola.26902

  8. Shen, H., Lu, G., Zhang, T., Liu, J., Gu, Y., Perriat, P., Martini, M., Tillement, O., Gong, Q.: Nanotechnology 24(28), 285502 (2013). doi:10.1088/0957-4484/24/28/285502. url http://www.ncbi.nlm.nih.gov/pubmed/23792456

  9. Raychaudhuri, S., Dayeh, S.A., Wang, D., Yu, E.T.: Nano Lett. 9(6), 2260 (2009). doi:10.1021/nl900423g. url http://www.ncbi.nlm.nih.gov/pubmed/19419157

  10. Decossas, S., Mazen, F., Baron, T., Brémond, G., Souifi, A.: Nanotechnology 14, 1271 (2003). url http://iopscience.iop.org/0957-4484/14/12/008

  11. Benson, O.: Nature 480(7376), 193 (2011). doi:10.1038/nature10610. url http://www.ncbi.nlm.nih.gov/pubmed/22158243

  12. Roger, K., Eissa, M., Elaissari, A., Cabane, B.: Langmuir : ACS J. Surf. Colloids. 29(36), 11244 (2013). doi:10.1021/la4019053. url http://www.ncbi.nlm.nih.gov/pubmed/23844840

  13. Boissy, P., Genest, J., Patenaude, J., Poirier, M.S., Chenel, V., Béland, J.P., Legault, G.A., Bernier, L., Tapin, D., Beauvais, J.: 33rd Annual International Conference of the IEEE EMBS 2011, 5824 (2011). doi:10.1109/IEMBS.2011.6091441. url http://www.ncbi.nlm.nih.gov/pubmed/22255664

  14. Ternon, C., Serre, P., Rey, G., Holtzinger, C., Periwal, P., Martin, M., Baron, T., Stambouli, V., Langlet, M.: Physica Status Solidi (RRL) – Rapid Res. Lett. 7(10), 919 (2013). doi:10.1002/pssr.201308047. url http://dx.doi.org/10.1002/pssr.201308047

  15. Palazon, V., Monnier, V., Souteyrand, E., Chevolot, Y., Cloarec, J.P.: J. Colloid Sci. Biotechnol. (in press) (2014)

    Google Scholar 

  16. Espinosa, C.E., Guo, Q., Singh, V., Behrens, S.H.: Langmuir 26(22), 16941 (2010). doi:10.1021/la1033965. url http://www.ncbi.nlm.nih.gov/pubmed/20942432

  17. Kosmulski, M.: Advances in colloid and interface science 171–172, 77 (2012). doi:10.1016/j.cis.2012.01.005. url http://www.ncbi.nlm.nih.gov/pubmed/22364911

  18. Kosmulski, M.: J. Colloid Interface Sci. 353(1), 1 (2011). doi:10.1016/j.jcis.2010.08.023. url http://www.ncbi.nlm.nih.gov/pubmed/20869721

  19. Serre, P., Ternon, C., Stambouli, V., Periwal, P., Baron, T.: Sens. Actuators B Chem. 182, 390 (2013). doi:10.1016/j.snb.2013.03.022. url http://linkinghub.elsevier.com/retrieve/pii/S0925400513003031

  20. He, H.X., Zhang, H., Li, Q.G., Zhu, T., Li, S.F.Y., Liu, Z.F.: Langmuir 16(17), 3846 (2000)

    Article  CAS  Google Scholar 

  21. Nidetz, R., Kim, J.: Nanotechnology 23(4), 045602 (2012). doi:10.1088/0957-4484/23/4/045602. url http://www.ncbi.nlm.nih.gov/pubmed/22214926

  22. Gilles, S., Kaulen, C., Pabst, M., Simon, U., Offenhäusser, A., Mayer, D.: Nanotechnology 22(29), 295301 (2011). doi:10.1088/0957-4484/22/29/295301. url http://www.ncbi.nlm.nih.gov/pubmed/21673378

  23. Yang, J., Ichii, T., Murase, K., Sugimura, H.: Langmuir 28, 7579 (2012). doi:10.1021/la301042y. url http://www.ncbi.nlm.nih.gov/pubmed/22564105

  24. Kolibal, M., Konecny, M., Ligmajer, F., Skoda, D., Vystavel, T., Zlamal, T., Varga, P., Sikola, T., Zla, J., Kone, M., Kol, M.P.: Engineering, C. Republic, C. But, F.E.I. Company, A. Physik, T. Universit, ACS nano 6(11), 10098 (2012). url http://pubs.acs.org/doi/abs/10.1021/nn3038226

  25. Maury, P., Peter, M., Mahalingam, V., Reinhoudt, D.N., Huskens, J.: Adv. Funct. Mater. 15(3), 451 (2005). doi:10.1002/adfm.200400284. url http://doi.wiley.com/10.1002/adfm.200400284

  26. Heo, K., Cho, E., Yang, J.E., Kim, M.H., Lee, M., Lee, B.Y., Kwon, S.G., Lee, M.S., Jo, M.H., Choi, H.J., Hyeon, T., Hong, S.: Nano Lett. 8(12), 4523 (2008). doi:10.1021/nl802570m. url http://www.ncbi.nlm.nih.gov/pubmed/19367934

  27. Arpin, K.A., Pikul, J.H., King, W.P., Fan, H., Braun, P.V.: Soft Matter. 7(21), 10252 (2011). doi:10.1039/c1sm06078c. url http://xlink.rsc.org/?DOI=c1sm06078c

  28. Zheng, Y., Lalander, C.H., Thai, T., Dhuey, S., Cabrini, S., Bach, U.: Angewandte Chemie (International ed. in English) 50(19), 4398 (2011). doi:10.1002/anie.201006991. url http://www.ncbi.nlm.nih.gov/pubmed/21480442

  29. Sam, S., Touahir, L., Salvador Andresa, J., Allongue, P., Chazalviel, J.N., Gouget-Laemmel, A.C., Henry de Villeneuve, C., Moraillon, A., Ozanam, F., Gabouze, N., Djebbar, S.: Langmuir 26(2), 809 (2010). doi:10.1021/la902220a. url http://www.ncbi.nlm.nih.gov/pubmed/19725548

  30. Barsotti, R.J Jr., Stellacci, F.: J. Mater. Chem. 16(10), 962 (2006). doi:10.1039/b516134g. url http://xlink.rsc.org/?DOI=b516134g

  31. Trevisan, M., Chevolot, Y., Monnier, V., Cloarec, J.P., Souteyrand, E., Duval, A., Moreau, J., Canva, M.: Int. J. Nanosci. 11(4) (2012). url http://www.scopus.com/inward/record.url?eid=2-s2.0-84867057183&partnerID=40&md5=16e33103dd4a1d26df7149b5580bb249

  32. Park, M.H., Ofir, Y., Samanta, B., Arumugam, P., Miranda, O.R., Rotello, V.M.: Adv. Mater. 20, 4185 (2008). doi:10.1002/adma.200801155. url http://doi.wiley.com/10.1002/adma.200801155

  33. Yan, L., Zhao, X.M., Whitesides, G.M.: J. Am. Chem. Soc. 120(12), 6179 (1998)

    Article  CAS  Google Scholar 

  34. Maeda, K., Okabayashi, N., Kano, S., Takeshita, S., Tanaka, D., Sakamoto, M., Teranishi, T., Majima, Y.: ACS Nano 6(3), 2798 (2012). doi:10.1021/nn3003086. url http://www.ncbi.nlm.nih.gov/pubmed/22369466

  35. Jie, Y., Niskala, J.R., Johnston-Peck, A.C., Krommenhoek, P.J., Tracy, J.B., Fan, H., You, W.: J. Mater. Chem. 22(5), 1962 (2012). doi:10.1039/c1jm14612b. url http://xlink.rsc.org/?DOI=c1jm14612b

  36. Yildirim, O., Gang, T., Kinge, S., Reinhoudt, D.N., Blank, D.H., van der Wiel, W.G., Rijnders, G., Huskens, J.: Int. J. Mol Sci. 11(3), 1162 (2010). doi:10.3390/iijms11031162. url http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2869229&tool=pmcentrez&rendertype=abstract

  37. Lalander, C., Zheng, Y., Dhuey, S., Cabrini, S.: ACS Nano 4(10), 6153 (2010). url http://pubs.acs.org/doi/abs/10.1021/nn101431k

  38. Anstaett, P., Zheng, Y., Thai, T., Funston, A.M., Bach, U., Gasser, G.: Angewandte Chemie (International ed. in English) 52(15), 4217 (2013). doi:10.1002/anie.201209684. url http://www.ncbi.nlm.nih.gov/pubmed/23460137; http://doi.wiley.com/10.1002/anie.201209684

  39. Grancharov, S.G., Zeng, H., Sun, S., Wang, S.X., O’Brien, S., Murray, C.B., Kirtley, J.R., Held, G.A.: J. Phys Chem. B 109(26), 13030 (2005). doi:10.1021/jp051098c. url http://www.ncbi.nlm.nih.gov/pubmed/16852617

  40. Osaka, T., Matsunaga, T., Nakanishi, T., Arakaki, A., Niwa, D., Iida, H.: Anal. Bioanal Chem. 384(3), 593 (2006). doi:10.1007/s00216-005-0255-7. url http://www.ncbi.nlm.nih.gov/pubmed/16402174

  41. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Chem. Rev. 105(4), 1103 (2005). doi:10.1021/cr0300789. url http://www.ncbi.nlm.nih.gov/pubmed/15826011

  42. Lereau. M., Fournier-Wirth, C., Mayen, J., Farre, C., Meyer, A., Dugas, V., Cantaloube, J.F., Chaix, C., Vasseur, J.J., Morvan, F.: Anal. Chem. 85(19), 9204 (2013). doi:10.1021/ac401941x. url http://www.ncbi.nlm.nih.gov/pubmed/24050654

  43. Chinwangso, P., Jamison, A.C., Lee, T.R.: Acc. Chem. Res. 44(7), 511 (2011). doi:10.1021/ar200020s. url http://www.ncbi.nlm.nih.gov/pubmed/21612198

  44. Tulpan, D., Andronescu, M., Leger, S.: BMC Bioinform. 11, 105 (2010). doi:10.1186/1471-2105-11-105. url http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2837027&tool=pmcentrez&rendertype=abstract

  45. Miyamoto, S., Kollman, P.A.: Proteins: Struct. Funct. Bioinf. 16(3), 226 (1993). doi:10.1002/prot.340160303. url http://dx.doi.org/10.1002/prot.340160303

  46. Briand, E., Salmain, M., Herry, J.M., Perrot, H., Compère, C., Pradier, C.M.: Biosens. Bioelectron. 22, 440 (2006). doi:10.1016/j.bios.2006.05.018

    Article  CAS  Google Scholar 

  47. Briand, E., Gu, C., Boujday, S., Salmain, M., Herry, J., Pradier, C.: Surface Sci. 601(18), 3850 (2007). doi:10.1016/j.susc.2007.04.102. url http://linkinghub.elsevier.com/retrieve/pii/S0039602807002944

  48. Lee, H., Purdon, A.M., Westervelt, R.M.: Appl. Phys. Lett. 85(6), 1063 (2004). doi:10.1063/1.1776339. url http://link.aip.org/link/APPLAB/v85/i6/p1063/s1&Agg=doi

  49. Maury, P., Escalante, M., Reinhoudt, D.N., Huskens, J.: Adv. Mater. 17(22), 2718 (2005). doi:10.1002/adma.200501072. url http://doi.wiley.com/10.1002/adma.200501072

  50. Adams, J., Tizazu, G., Janusz, S., Brueck, S.R.J., Lopez, G.P., Leggett, G.J. Langmuir 26(16), 13600 (2010). doi:10.1021/la101876j. url http://www.ncbi.nlm.nih.gov/pubmed/20695609

  51. Kumar, A., Whitesides, G.M.: Appl. Phys. Lett. 63(14), 2002 (1993). doi:10.1063/1.110628. url http://link.aip.org/link/APPLAB/v63/i14/p2002/s1&Agg=doi

  52. Xia, Y., Mrksich, M., Kim, E., Whitesides, G.M.: J. Am. Chem. Soc. 117, 9576 (1995). url http://pubs.acs.org/doi/abs/10.1021/ja00142a031

  53. Mondin, G., Schumm, B., Fritsch, J., Grothe, J., Kaskel, S.: Microelectron. Eng. 104, 100 (2013). doi:10.1016/j.mee.2012.11.022. url http://linkinghub.elsevier.com/retrieve/pii/S016793171200593X

  54. Zhang, G.H., Tanii, T., Zako, T., Hosaka, T., Miyake, T., Kanari, Y., Funatsu, T., Ohdomari, I.: Small 1(8–9), 833 (2005). doi:10.1002/smll.200500091. url http://www.ncbi.nlm.nih.gov/pubmed/17193534

  55. Rundqvist, J., Hoh, J.H., Haviland, D.B.: Langmuir 22(11), 5100 (2006). doi:10.1021/la052306v. url http://www.ncbi.nlm.nih.gov/pubmed/16700600

  56. Hoa, X.D., Martin, M., Jimenez, A., Beauvais, J., Charette, P., Kirk, A., Tabrizian, M.: Biosens. Bioelectron. 24(4), 976 (2008). doi:10.1016/j.bios.2008.07.069. url http://www.ncbi.nlm.nih.gov/pubmed/18790627

  57. Belarouci, A., Benyattou, T., Letartre, X., Viktorovitch, P.: Opt. Express 18(3), 381 (2010). url http://www.ncbi.nlm.nih.gov/pubmed/21165068

  58. Zhang, T., Belarouci, A., Callard, S., Rojo-Romeo, P., Letartre, X., Viktorovitch, P.: Int. J. Nanosci. 11(04), 1240019 (2012). doi:10.1142/S0219581X12400194. url http://www.worldscientific.com/doi/abs/10.1142/S0219581X12400194

  59. Haddour, N., Chevolot, Y., Trévisan, M., Souteyrand, E., Cloarec, J.P.: J. Mater. Chem. 20(38), 8266 (2010). doi:10.1039/b920460a. url http://xlink.rsc.org/?DOI=b920460a

Download references

Acknowledgements

The ANR P2N, ANR-12-NANO-0016-04 (PIRANEX project), is greatly acknowledged for financial support. CNRS, École Centrale de Lyon and INSA de Lyon are acknowledged for J.-P. Cloarec and A. Souifi delegations in LN2. NanoLyon is acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Cloarec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Palazon, F. et al. (2015). Site-Selective Self-Assembly of Nano-Objects on a Planar Substrate Based on Surface Chemical Functionalization. In: Baillin, X., Joachim, C., Poupon, G. (eds) Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-21194-7_7

Download citation

Publish with us

Policies and ethics