Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 182))

Abstract

In comparison to photon or electron beams used in conventional radiation therapy, high-energy proton- and heavy-ion beams offer favorable conditions for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. The well-defined range and the small lateral beam spread make it possible to deliver the dose with millimetre precision. Heavy ions , in addition, have an enhanced biological effectiveness in the Bragg peak region which is caused by the dense ionization and the resulting reduced cellular repair rate and make them very attractive for the treatment of radio-resistant local tumors. The article gives an introduction to hadrontherapy, including remarks on the history, basic physical and radiobiological principles, techniques of beam delivery and dose verification, and clinical experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Barkas, Nuclear Research Emulsions, vol. 1 (Academic, New York, 1963)

    Google Scholar 

  2. W. Bragg, R. Kleeman, On the \(\upalpha \)-particles of radium and their loss of range in passing through various atoms and molecules. Phil Mag 10, 318–340 (1905)

    Google Scholar 

  3. N. Bohr, On the theory of the decrease of velocity of moving electrified particles on passing through matter. Phil. Mag. 25, 10–31 (1913)

    Article  MATH  Google Scholar 

  4. S. Combs et al., Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base. Cancer 115, 1348–1355 (2009)

    Article  Google Scholar 

  5. W.T. Chu et al., Instrumentation for treatment of cancer using proton and light-ion beams. Rev. Sci. Instrum. 64, 2055–2122 (1993)

    Article  ADS  Google Scholar 

  6. W. Enghardt et al., Charged hadron tumour therapy monitoring by means of PET. Nucl. Instr. Meth. Phys. Res. A 525, 284–288 (2004)

    Article  ADS  Google Scholar 

  7. K. Gunzert-Marx et al., Secondary beam fragments produced by 200 MeV/u \(^{12}\)C ions in water and their dose contributions in carbon ion radiotherapy. New J. Phys. 10, 075003 (2008)

    Article  ADS  Google Scholar 

  8. T. Haberer et al., Magnetic scanning system for heavy ion therapy. Nucl. Instr. Meth. Phys. Res. A 330, 296–305 (1993)

    Article  ADS  Google Scholar 

  9. E. Haettner et al., Experimental study of nuclear fragmentation of 200 and 400 MeV/u \(^{12}\)C ions in water for applications in particle therapy. Phys. Med. Biol. 58(23), 8265–8279 (2013)

    Article  Google Scholar 

  10. V.L. Highland, Some practical remarks on multiple scattering. Nucl. Instr. Meth. Phys. Res. 129, 497–499 (1975)

    Article  ADS  Google Scholar 

  11. Y. Hirao et al., Heavy-ion synchrotron for medical use—HIMAC project at NIRS Japan. Nucl. Phys. A 538(1992), 541c–550c (1992)

    Article  ADS  Google Scholar 

  12. ICRU, ICRU Report 78. Prescribing, recording and reporting proton-beam therapy. J. ICRU 7(2) (2007)

    Google Scholar 

  13. O. Jäkel, in Radiotherapy with Protons and Ion Beams, ed. by C. Alonso, M.V. Andrés, J. Garcia-Ramos, F. Pérez-Bernal. La Rábida 2009 International Scientific meeting on Nuclear Physics, AIP Conference Proceedings 1231 (2009)

    Google Scholar 

  14. A.D. Jensen et al., COSMIC: A regimen of intensity modulated radiation therapy plus dose-escalated, raster-scanned carbon ion boost for malignant salivary gland tumors: results of the prospective phase 2 trial. Int. J. Radiat. Oncol. Biol. Phys. 93(1), 37–46 (2015)

    Article  Google Scholar 

  15. M. Jermann, Particle therapy statistics in 2013. Int. J. Part. Ther. 1, 40–43 (2014)

    Google Scholar 

  16. B. Jones, Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models. Cancers 7, 460–480 (2015)

    Article  Google Scholar 

  17. C.P. Karger et al., A system for three-dimensional dosimetric verification of treatment plans in intensity-modulated radiotherapy with heavy ions. Med. Phys. 26, 2125–2132 (1999)

    Article  Google Scholar 

  18. G. Kraft, Tumor therapy with heavy charged particles. Prog. Part. Nucl. Phys. 45, S473–S544 (2000)

    Article  ADS  Google Scholar 

  19. M. Krämer, Calculations of heavy-ion track structure. Nucl. Instr. Meth. Phys. Res. B 105, 14–20 (1995)

    Article  ADS  Google Scholar 

  20. M. Krämer et al., Treatment planning for heavy-ion radiotherapy: Physical beam model and dose optimization. Phys. Med. Biol. 45, 3299–3317 (2000)

    Article  Google Scholar 

  21. M. Krämer, M. Scholz, Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys. Med. Biol. 45, 3319–3330 (2000)

    Article  Google Scholar 

  22. M. Krämer et al., Biological dosimetry of complex ion radiation fields. Phys. Med. Biol. 48, 2063–2070 (2003)

    Google Scholar 

  23. N. Matsufuji et al., Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Phys. Med. Biol. 43, 3261–3275 (1998)

    Article  Google Scholar 

  24. C.H. Min et al., Determination of distal dose edge location by measuring right-angled prompt-gamma rays from a 38-MeV proton beam. Nucl. Instrum. Meth. Phys. Res. A 580, 562–565 (2007)

    Article  ADS  Google Scholar 

  25. G. Molière, Theorie der Streuung schneller geladener Teilchen II, Mehrfach- und Vielfachstreuung. Z. Naturforsch. 3a, 78–97 (1948)

    Google Scholar 

  26. H. Paganetti et al., Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 407–421 (2002)

    Article  Google Scholar 

  27. K. Parodi et al., Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy. IEEE Trans. Nucl. Sci. 52, 778–786 (2005)

    Article  ADS  Google Scholar 

  28. K. Parodi et al., Comparison between in-beam and offline positron emission tomography imaging of proton and carbon ion therapeutic irradiation at synchrotron- and cyclotron-based facilities. Int. J. Radiat. Oncol. Biol. Phys. 71, 945–956 (2008)

    Article  Google Scholar 

  29. E. Pedroni et al., The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med. Phys. 22, 37–53 (1995)

    Article  Google Scholar 

  30. P.L. Petti, A.J. Lennox, Hadronic radiotherapy. Ann. Rev. Nucl. Part. Sci. 44, 155–197 (1994)

    Article  ADS  Google Scholar 

  31. M. Pinto et al., Absolute prompt-gamma yield measurements for ion beam therapy monitoring. Phys. Med. Biol. 60, 565–594 (2015)

    Article  Google Scholar 

  32. M.R. Raju, Advances in hadrontherapy, International Congress Series No. 1077 (Elsevier Science, New York, 1994), pp. 67–79

    Google Scholar 

  33. E. Rietzel et al., Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples. Radiat. Oncol. 2, 14 (2007)

    Article  Google Scholar 

  34. B. Schaffner, E. Pedroni, The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power. Phys. Med. Biol. 43, 1579–1592 (1998)

    Article  Google Scholar 

  35. J.M. Schippers et al., The SC cyclotron and beam lines of PSI’s new proton therapy facility PROSCAN. Nucl. Instr. Meth. Phys. Res. B 261, 773–776 (2007)

    Article  ADS  Google Scholar 

  36. D. Schardt et al., Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82, 383–425 (2010)

    Article  ADS  Google Scholar 

  37. M. Scholz, Effects of ion radiation on cells and tissues. Adv. Polym. Sci. 62, 96–155 (2003)

    Google Scholar 

  38. M. Scholz et al., Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat. Environ. Biophys. 36, 59–66 (1997)

    Article  Google Scholar 

  39. M. Scholz, G. Kraft, Calculation of heavy ion inactivation probability based on track structure, X-ray sensitivity and target size. Radiat. Prot. Dosim. 52, 29–33 (1994)

    Google Scholar 

  40. E. Schrödinger, What is Life? (Cambridge University Press, Cambridge, 1944)

    Google Scholar 

  41. D. Schulz-Ertner et al., Results of carbon ion radiotherapy in 152 patients. Int. J. Radiat. Oncol. Biol. Phys. 58, 631–640 (2004)

    Article  Google Scholar 

  42. D. Schulz-Ertner et al., Therapy strategies for locally advanced adenoid cystic carcinomas using modern radiation therapy techniques. Cancer 104, 338–344 (2005)

    Article  Google Scholar 

  43. D. Schulz-Ertner et al., Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68, 449–457 (2007)

    Article  Google Scholar 

  44. R. Serber, Nuclear reactions at high energies. Phys. Rev. 72(11), 1114–1115 (1947)

    Article  ADS  Google Scholar 

  45. L. Sihver et al., Depth-dose distributions of high-energy carbon, oxygen and neon beams in water. Jpn. J. Med. Phys. 18(1), 1–21 (1998)

    ADS  Google Scholar 

  46. C.A. Tobias, Heavy charged particles in cancer therapy. Radiobiology and Radiotherapy, Institute Monograph No. 24 (1967)

    Google Scholar 

  47. Y.S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974)

    Article  ADS  Google Scholar 

  48. H. Tsujii et al., Clinical advantages of carbon-ion radiotherapy. New. J. Phys. 10, 075009 (2008)

    Google Scholar 

  49. M. Uhl et al., High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy: first report of long-term results. Cancer 120(10), 1579–1585 (2014a)

    Article  Google Scholar 

  50. M. Uhl et al., Comparing the use of protons and carbon ions for treatment. Cancer J. 20(6), 433–439 (2014b)

    Article  Google Scholar 

  51. R.R. Wilson, Radiological use of fast protons. Radiology 47, 487–491 (1946)

    Article  Google Scholar 

  52. W.K. Weyrather et al., RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int. J. Radiat. Biol. 75, 1357–1364 (1999)

    Google Scholar 

  53. R.R. Wilson, Advances in Hadrontherapy, International Congress Series No. 1144, (Elsevier Science, New York, 1997), pp. ix–xiii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schardt, D. (2016). Hadrontherapy. In: García-Ramos, JE., Alonso, C., Andrés, M., Pérez-Bernal, F. (eds) Basic Concepts in Nuclear Physics: Theory, Experiments and Applications. Springer Proceedings in Physics, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-21191-6_2

Download citation

Publish with us

Policies and ethics