Skip to main content

Abstract

This Operational amplifiers have been the backbone of most amplifiers and filters in communication applications and ADCs. They are in competition with Gm blocks for higher frequencies despite their higher linearity. Both of them are now gradually being replaced by CMOS inverters. This text focuses on the merits and advantages of all three of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sansen W (2006) Analog design essentials. Springer, Dordrecht

    Google Scholar 

  2. Sansen W (2013) In: 2013 IEEE 20th international conference on electronics, circuits, and systems (ICECS), pp 337–340

    Google Scholar 

  3. Ohri KB, Callahan MJ (1979) Integrated PCM codec. IEEE J Solid-State Circuits SC-14(1):38–46

    Article  Google Scholar 

  4. Camenzind HR, Grebene AB (1969) An outline of design techniques for linear integrated circuits. IEEE J Solid-State Circuits 4(3):110–122

    Article  Google Scholar 

  5. Van de Plassche RJ (1971) A wide-band operational amplifier with a new output stage and a simple frequency compensation. IEEE J Solid-State Circuits 6(6):347–352

    Article  Google Scholar 

  6. Peng X, Sansen W (2005) Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE J Solid-State Circuits 40(7):1514–1520

    Article  Google Scholar 

  7. Grasso AD, Palumbo G, Pennisi S (2007) Advances in reversed nested Miller compensation. IEEE Trans Circuits Syst I 54(7):1459–1470

    Article  Google Scholar 

  8. Qu W, Im J-P, Kim H-S, Cho G-H (2014) 17.3 A 0.9V 6.3μW multistage amplifier driving 500pF capacitive load with 1.34MHz GBW. In: Solid-state circuits conference digest of technical papers (ISSCC), 2014 IEEE international, pp 290–291

    Google Scholar 

  9. Sansen W (2012) In: IEEE international solid-state circuits conference short course 2012

    Google Scholar 

  10. De Matteis M, Pezzotta A, D’Amico S, Baschirotto A (2014) A 33-MHz 70dB-SNR super-source-follower-based low-pass analog filter. In: ESSCIRC 2014—40th European solid state circuits conference, pp 363–366

    Google Scholar 

  11. Alini R, Baschirotto A, Castello R (1992) Tunable BiCMOS continuous-time filter for high-frequency applications. IEEE J Solid-State Circuits 27(12):1905–1915

    Article  Google Scholar 

  12. Nauta B (1992) A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid-State Circuits 27(2):142–146

    Article  Google Scholar 

  13. Christen T (2013) A 15-bit 140-μW scalable-bandwidth inverter-based ∆Σ modulator for a MEMS microphone with digital output. IEEE J Solid-State Circuits 48(7):1605–1614

    Article  Google Scholar 

  14. Chae Y, Han G (2009) Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J Solid-State Circuits 44(2):458–472

    Article  Google Scholar 

  15. Luo H, Han Y, Cheung RCC, Liu X, Cao T (2013) A 0.8-V 230-uW 98-dB DR inverter-based sigma-delta modulator for audio applications. IEEE J Solid-State Circuits 48(10):2430–2441

    Article  Google Scholar 

  16. Wang J, Matsuoka T, Taniguchi K (2009) A 0.5 V feedforward delta-sigma modulator with inverter-based integrator. In: Proceedings of ESSCIRC 2009, pp 328–331

    Google Scholar 

  17. Michel F, Steyaert M (2012) A 250mV 7.5μW 61dB SNDR SC ∆Σ modulator using near-threshold-voltage-biased inverter amplifiers in 130nm CMOS. IEEE J Solid-State Circuits 47(3):709–721

    Article  Google Scholar 

  18. Drost B, Talegaonkar M, Hanumolu PK (2012) Analog filter design using ring oscillator integrators. IEEE J Solid-State Circuits 47(12):3120–3129

    Article  Google Scholar 

  19. Hsu C-W, Kinget PR (2014) A 40MHz 4th-order active-UGB-RC filter using VCO-based amplifiers with zero compensation. In: ESSCIRC 2014, pp 359–362

    Google Scholar 

  20. Hershberg B, Weaver S, Sobue K, Takeuchi S, Hamashita K, Moon U (2012) Ring amplifiers for switched capacitor circuits. IEEE J Solid-State Circuits 47(12):2928–2942

    Article  Google Scholar 

  21. Lim Y, Flynn MP (2015) In: International solid state circuits conference, pp 458–459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Sansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sansen, W. (2016). Opamps, Gm-Blocks or Inverters?. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21185-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21185-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21184-8

  • Online ISBN: 978-3-319-21185-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics