Skip to main content

A Micro-Power Temperature-to-Digital Converter for Use in a MEMS-Based 32 kHz Oscillator

  • Chapter
Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems

Abstract

This paper describes the design of a low-power energy-efficient temperature-to-digital converter (TDC) intended for the temperature compensation of a 32 kHz MEMS-based oscillator (TCXO). The compensation scheme enables a frequency stability of ±3 ppm over temperatures ranging from −40 to 85 °C. The TDC consists of an NPN-based temperature sensing element and a 15-bit second order ΔΣ modulator. A novel dynamic element matching (DEM) scheme ensures that DEM tones do not inter-modulate with the modulator’s bit-stream, thus improving the TDC’s accuracy without impacting its resolution. The TDC occupies 0.085 mm2 in a 180 nm CMOS process, draws less than 4.5 μA from a 1.5 to 3.3 V supply, and achieves a resolution of 25 mK in a conversion time of 6 ms. This corresponds to a figure of merit of 24 pJ°C2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalla Piazza S. Quartz tuning forks: a high-volume, low-cost, high-tech MEMS product. [online]. http://www.go4time.eu/publications/37-general.html

  2. Datasheet. Epson TG-3530SA [online]. http://www.eea.epson.com/portal/pls/portal/docs/1/1547462.PDF

  3. Datasheet. Maxim integrated DS32KHz [online]. http://datasheets.maximintegrated.com/en/ds/DS32kHz.pdf

  4. Zaliasl S, Salvia JC et al (2015) A 3 ppm 1.5 × 0.8 mm2 1.0μA 32.768 kHz MEMS-based oscillator. IEEE J Solid State Circuits 50:291–302

    Article  Google Scholar 

  5. Ruffieux D, Krummenacher F, Pezous A, Spinola-Durante G (2010) Silicon resonator based 3.2μW real time clock with ±10ppm frequency accuracy. IEEE J Solid-State Circuits 45:224–234

    Article  Google Scholar 

  6. Gardner F (1979) Phaselock techniques, 2nd edn. Wiley, New York

    Google Scholar 

  7. Makinwa KAA. Smart temperature sensor survey [online]. http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

  8. Sebastiano F, Breems LJ, Makinwa KAA, Drago S, Leenaerts D, Nauta B (2010) A 1.2-V 10μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2°C (3σ) from −70°C to 125°C. IEEE J Solid-State Circuits 45(12):2591–2601

    Article  Google Scholar 

  9. Souri K, Makinwa KAA (2011) A 0.12mm2 7.4μW micropower temperature sensor with an inaccuracy of 0.2°C (3-sigma) from −30°C to 125°C. IEEE J Solid-State Circuits 46(7):1693–1700

    Article  Google Scholar 

  10. Pertijs MAP, Makinwa K, Huijsing J (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of 0.1°C from 55°C to 125°C. IEEE J Solid-State Circuits 40(12):2805–2815

    Article  Google Scholar 

  11. Perrott MH. CppSim system simulator package [online]. http://www.cppsim.com

  12. Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1% from 55°C to 125°C. IEEE J Solid-State Circuits 45(12):2510–2520

    Article  Google Scholar 

  13. Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht

    Google Scholar 

  14. Enz CC, Temes GC (1996) Circuit techniques for reducing the effects of op-amp imperfections: auto-zeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614

    Article  Google Scholar 

  15. Vadipour M (2000) Techniques for preventing tonal behavior of data weighted averaging algorithm in ΣΔ modulators. IEEE Trans Circuits Syst II Analog Digit Signal Process 47(11):1137–1144

    Article  Google Scholar 

  16. Wang CB (2001) A 20-bit 25-kHz delta-sigma A/D converter utilizing a frequency-shaped chopper stabilization scheme. IEEE J Solid-State Circuits 36(3):566–569

    Article  Google Scholar 

  17. Pertijs MAP, Huijsing JH (2004) A sigma-delta modulator with bitstream-controlled dynamic element matching. In: Solid-state circuit conference, ESSCIRC 2004, pp 184–190

    Google Scholar 

  18. Datasheet. Kyocera KT3225T [online]. http://global.kyocera.com/prdct/electro/pdf/khz/kt3225t_e.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Zaliasl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaliasl, S., Salvia, J., Fiez, T., Makinwa, K., Partridge, A., Menon, V. (2016). A Micro-Power Temperature-to-Digital Converter for Use in a MEMS-Based 32 kHz Oscillator. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21185-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21185-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21184-8

  • Online ISBN: 978-3-319-21185-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics