Skip to main content

Abstract

The improving effectiveness of adoptive T cell therapies has led to their increased clinical application. Most of these adoptive T cell therapies are being produced in small lots in cell therapy centers affiliated with or located within academic health centers. Typically, the cells are produced from autologous or HLA compatible donors and one lot is used for a single patient. As part of early phase clinical trials, the best available methods and devices for the manufacture of clinical grade T cell therapies are described. For most adoptive T cell therapies the starting material is a peripheral blood mononuclear cell (PBMC) product that is collected by apheresis using closed system blood cell separators. Many manufacturing processes require that red blood cells be removed from the PBMCs or that T cells or T cell subsets are isolated. Classically, T cells have been cultured in flasks, but culture in closed systems which reduces the risk of microbial contamination is desirable and bags and bioreactors are often used for T cell culture and expansion. T cell culture involves growth and expansion in media supplemented with serum, cytokines and feeder cells or other artificial stimulators, i.e. anti-CD3/28 beads or K562 cell line. Recently, closed system transduction methods have been developed that can be used to produce genetically engineered T cells. Automated instruments are available to wash and concentrate products. The final product is assessed for the quantity of cells present, purity, sterility and potency. The use of these best practices is allowing for the consistent manufacturing of high quality cellular therapies to support early phase clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R et al (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24(4):363–373

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Besser MJ, Shapira-Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, Kubi A, Shoshani N, Zikich D, Ohayon Y et al (2013) Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 19(17):4792–4800

    Article  CAS  PubMed  Google Scholar 

  4. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  Google Scholar 

  5. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, Qian X, James SE, Raubitschek A, Forman SJ et al (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112(6):2261–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Till BG, Raubitschek AA, Forman SJ, Press OW (2008) Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J Immunol 180(10):7028–7038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giordano Attianese GM, Marin V, Hoyos V, Savoldo B, Pizzitola I, Tettamanti S, Agostoni V, Parma M, Ponzoni M, Bertilaccio MT et al (2011) In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood 117(18):4736–4745

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shaffer DR, Savoldo B, Yi Z, Chow KK, Kakarla S, Spencer DM, Dotti G, Wu MF, Liu H, Kenney S et al (2011) T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies. Blood 117(16):4304–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK et al (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108(12):3890–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, Gress RE, Hakim FT, Kochenderfer JN (2013) B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 19(8):2048–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, Rainusso N, Wu MF, Liu H, Kew Y et al (2013) T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther 21(3):629–637

    Article  CAS  PubMed  Google Scholar 

  15. Selvaggi TA, Walker RE, Fleisher TA (1997) Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89(3):776–779

    CAS  PubMed  Google Scholar 

  16. Macy E, Bulpitt K, Champlin RE, Saxon A (1989) Anaphylaxis to infusion of autologous bone marrow: an apparent reaction to self, mediated by IgE antibody to bovine serum albumin. J Allergy Clin Immunol 83(5):871–875

    Article  CAS  PubMed  Google Scholar 

  17. Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49(3):152–156

    Article  CAS  PubMed  Google Scholar 

  18. Eder AF, Kennedy JM, Dy BA, Notari EP, Weiss JW, Fang CT, Wagner S, Dodd RY, Benjamin RJ (2007) Bacterial screening of apheresis platelets and the residual risk of septic transfusion reactions: the American Red Cross experience (2004–2006). Transfusion 47(7):1134–1142

    Article  PubMed  Google Scholar 

  19. Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF, Rosenberg SA (2012) Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 35(3):283–292

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shu Z, Heimfeld S, Gao D (2013) Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant 30

    Google Scholar 

  21. Ayello J, Hesdorffer C, Reiss RF (1995) A semiautomated technique for volume reduction of stem cell suspensions for autotransplantation. J Hematother 4(6):545–549

    Article  CAS  PubMed  Google Scholar 

  22. Przepiorka D, Van VP, Huynh L, Durett A, Agbor P, Lauppe J, Valone F, Champlin R, Korbling M (1996) Rapid debulking and CD34 enrichment of filgrastim-mobilized peripheral blood stem cells by semiautomated density gradient centrifugation in a closed system. J Hematother 5(5):497–502

    Article  CAS  PubMed  Google Scholar 

  23. Schumm M, Lang P, Taylor G, Kuci S, Klingebiel T, Buhring HJ, Geiselhart A, Niethammer D, Handgretinger R (1999) Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the CliniMACS device. J Hematother 8(2):209–218

    Article  CAS  PubMed  Google Scholar 

  24. Campbell JD, Piechaczek C, Winkels G, Schwamborn E, Micheli D, Hennemann S, Schmitz J (2005) Isolation and generation of clinical-grade dendritic cells using the CliniMACS system. Methods Mol Med 109:55–70

    CAS  PubMed  Google Scholar 

  25. Adamson L, Palma M, Choudhury A, Eriksson I, Nasman-Glaser B, Hansson M, Hansson L, Kokhaei P, Osterborg A, Mellstedt H (2009) Generation of a dendritic cell-based vaccine in chronic lymphocytic leukaemia using CliniMACS platform for large-scale production. Scand J Immunol 69(6):529–536

    Article  CAS  PubMed  Google Scholar 

  26. Hannon M, Lechanteur C, Lucas S, Somja J, Seidel L, Belle L, Bruck F, Baudoux E, Giet O, Chantillon AM et al (2014) Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion 54:353–363

    Article  CAS  PubMed  Google Scholar 

  27. Koehl U, Brehm C, Huenecke S, Zimmermann SY, Kloess S, Bremm M, Ullrich E, Soerensen J, Quaiser A, Erben S et al (2013) Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol. Front Oncol 3:118

    Article  PubMed  PubMed Central  Google Scholar 

  28. Malone CC, Schiltz PM, Mackintosh AD, Beutel LD, Heinemann FS, Dillman RO (2001) Characterization of human tumor-infiltrating lymphocytes expanded in hollow-fiber bioreactors for immunotherapy of cancer. Cancer Biother Radiopharm 16(5):381–390

    Article  CAS  PubMed  Google Scholar 

  29. Klapper JA, Thomasian AA, Smith DM, Gorgas GC, Wunderlich JR, Smith FO, Hampson BS, Rosenberg SA, Dudley ME (2009) Single-pass, closed-system rapid expansion of lymphocyte cultures for adoptive cell therapy. J Immunol Methods 345(1-2):90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J Transl Med 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, Wilson J, Dotti G, Heslop HE, Leen AM et al (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 33(3):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmadzadeh M, Antony PA, Rosenberg SA (2007) IL-2 and IL-15 each mediate de novo induction of FOXP3 expression in human tumor antigen-specific CD8 T cells. J Immunother 30(3):294–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B, Dotti G (2014) Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes without enhancement of regulatory T-cell inhibition. Clin Cancer Res 20:131–139

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175(4):2261–2269

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Yee C (2008) IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes. Blood 111(1):229–235

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaka AS, Shaffer DR, Hartmaier R, Leen AM, Lu A, Bear A, Rooney CM, Foster AE (2009) Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. J Immunother 32(7):726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F et al (2013) IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121(4):573–584

    Article  CAS  PubMed  Google Scholar 

  38. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342

    Article  PubMed  PubMed Central  Google Scholar 

  39. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB, June CH (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159(12):5921–5930

    CAS  PubMed  Google Scholar 

  40. Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M (2004) Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and Anti-CD28 antibodies. J Immunother 27(5):405–418

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Kurlander RJ (2010) Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med 8:104

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, Carroll RG, Riley JL, June CH (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15(5):981–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, Coukos G, Powell DJ Jr (2011) Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med 9:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA, Wilson WH, Rosenberg SA (2009) Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 32(7):689–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tumaini B, Lee DW, Lin T, Castiello L, Stroncek DF, Mackall C, Wayne A, Sabatino M (2013) Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 28

    Google Scholar 

  46. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, Yeh R, Capacio V, Olszewska M, Hosey J et al (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 32(2):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stroncek M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stroncek, D., Jin, J., David-Ocampo, V., Fellowes, V., Moses, L., Sabatino, M. (2015). Production of Clinical T Cell Therapies. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_6

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics